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Abstract of the Dissertation
Lattice Geometrodynamics

by
Mark Corrado Galassi
Doctor of Philosophy
in
Physics

State University of New York

at Stony Brook
1992

I present the results of my work aimed at making Regge Calculus
a practical tool for numerical relativity. The principal results are a for-
malism for solving the Regge equations in the general case, a working
software package r3+1 which implements these methods, and a collec-
tion of numerical results produced by this software.

The formalism for solving the Regge equations consists of a set of
algorithms for constructing and analyzing arbitrary simplicial lattices,
calculating deficit angles, and (for the first time) calculating the Jaco-
bian of the Regge equations. I also present a definition of lapse and shift
in Regge Calculus.

At this time the software package consists of approximately ten
thousand lines of C++ code which offer a user interface, lattice analysis
routines, and routines to calculate and solve the Regge equations with
arbitrary choice lapse and shift. The Regge equations are solved using
Newton’s method and conjugate gradient methods.

The numerical runs presented here (1) confirm the validity of the
methods used; (2) examine the structure of diffeomorphism freedom in
Regge Calculus, giving the first verification that one can choose lapse
and shift freely; (3) examine the Bianchi identities and quantify the
extent to which time evolution in Regge Calculus preserves constraints,
finding that the constraints are proportional to the third power of the
lattice spacing.
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Chapter 1: Motivation and Plan of the Work

Regge Calculus is thirty one years old: the paper in which Regge invented the method was
published in 1961.

Since then there have been several interesting developments in which Regge Calculus
has been used to approximate known classical solutions to Einstein’s equations, or to
calculate path integrals in quantum gravity. Recently there has also been some interest
in using Regge Calculus to formulate the Polyakov path integral for the bosonic string.
The foundations of Regge Calculus have been explored and are well understood (Wheeler:
1963 and 1974; Miller: 1986a and 1986c¢). In many of the early papers people would
make comments like, “Regge Calculus should prove to be a flexible tool for putting general
relativity on a computer.” Meanwhile numerical relativists were developing software to
approximate general solutions to Einstein’s equations via finite differencing, but no parallel
development was occuring in Regge Calculus.

Warner Miller (1986b, 1986¢, 1988) first attempted solving the Regge equations with-
out making assumptions of symmetry: he developed the Null Strut Calculus, a modification
of Regge Calculus which offers certain computational advantages. Still there are no codes
today with the same scope as those used in finite differencing. Regge Calculus has not
proven to be a flexible tool for solving Einstein’s equations on a computer.

In this introductory “motivational” chapter I will ramble about the need for numerical
relativity and my own motivation for “putting Regge Calculus on the map” as a method
for numerical relativity. I will also give an overview of my methods and results.

Section 1.1 General Relativistic phenomenology

The need to go beyond Newtonian gravity was motivated by observations: the orbit of
Mercury could not be completely explained by classical methods. General relativity gives
the correct answer for the orbit of Mercury, and has given correct answers in all cases in
which corrections to Newtonian gravity have been needed. But when do we need these
corrections? And can other, easier methods be used? What is the phenomenology of
general relativity?

Early general relativistic phenomenology comprised the three classic tests of general
relativity of which the most important are the deflection of light by the sun and the
precession of the perihelia of planetary orbitsT. These effects have been verified, and
interest is shifting away from the solar system to the study of astrophysical phenomena.

Recent observations of energy loss in millisecond pulsars have matched predictions
of gravitational wave emissions: these are the first (indirect) results of gravitational wave
astrophysics. Gravitational wave astronomy promises to become the link between general
relativity and observational astronomy, since we expect that they should also be emitted
in great quantities by other astrophysical phenomena, most notably stellar collisions.

T The other test proposed by Einstein was the gravitational red shift of spectral lines
coming from massive bodies, which tests the principle of equivalence and not the details
of general relativity
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Gravitational wave astronomy will get a boost in the next decade from the develop-
ment of the Laser Interferometer Gravity—wave Observatory (LIGO). Gravitational radia-
tion from colliding black holes or neutron stars should be observable by LIGO, providing
experimental verification of the existence of black holes. Kip Thorne (1990) has set a
challenge for theorists to predict the detailed form of the signals that will be observed by
LIGO for various possible sources.

Section 1.2 The need for numerical relativity

There are few exact solutions of Einstein’s equations
Gy = KTy

(where k depends on the units and metric signature; in this section k = 87 G) and they are
remarkably specific. The only solutions of phenomenological interest are those of Kerr—
Newman and Friedman; most others have little application to real problems in astrophysics
and cosmology.

The way in which we construct solutions to Einstein’s equations usually involves mak-
ing a simplifying ansatz. That is, we assume that the solution will have a certain form
specified by certain parameters, and we obtain differential equations for those parameters
and solve them. The classic example is the Schwarzschild metric, where we assume that
the metric is static and isotropic. By skillfully manipulating coordinates we can put the
metric in the form

ds? = —B(r)dt* + A(r)dr® + r*(d6? + sin? 0d¢?)

where g, = A(7), g1t = B(r), geg = 72 and gg¢ = r2sin’6. It is clear that only two
components of the metric are unknown: the assumptions of time independence and isotropy
have eliminated the other unknowns.

By plugging this ansatz into the Einstein equations we get the solutions A(r)B(r) =
constant and rB(r) = r + constant. Enforcing the Newtonian limit for the gy field:

git = B —> 14 2¢

(where ¢ = —MG/r) we get

2M
B(r)y=1- ¢
.
and ) .
A =5 = T=@ian
yielding

2

2MG dr
1—-(2MG/r)

ds? = —(1- =2 i + +72(d0? + sin? 0dg?).

We have solved differential equations for A(r) and B(r) and obtained the very partic-
ular Schwarzschild metric. The Robertson-Walker metric is obtained by a similar ansatz:



Chapter 1: Motivation and Plan of the Work 3

the cosmological principle, which states that the universe is homogeneous and isotropic,
leads to the imposition of symmetry on each spacelike hypersurface, and restricts the metric
to having the form:

dr?

1— kr2

ds? = —dt? + R2(t){ +r2df? + 7~2sm29d¢2} .
This metric can be plugged into the Einstein equations with an energy momentum tensor
T, made of “dust”:

T, = puyu,,

yielding a differential equation for the cosmic scale factor R(t):

R+ k= ?pR?

An overview of existing solutions, in particular the two presented above, and of the
problems that need to be solved in relativistic phenomenology tells us that:

e there are few analytic solutions, and almost no useful solutions;

e all analytic solutions have a heavy dose of symmetry imposed through a simplify-
ing ansatz, although some non-symmetric solutions have been approximated using
perturbation theory;

e nobody ever attempts to set up general matter fields and then find general solutions
for all components of the metric g,,,;

e some key problems are not symmetrical: in particular stellar collisions and other
strong sources of gravitational waves.

The solution to these problems lies in attacking Einstein’s equations numerically and
without imposing symmetry. The ideal tool would be a black box which takes input
describing the distribution of matter and the initial geometry, and ouputs all components
of the metric as the geometry evolves in time. This is the goal of numerical relativity.

Section 1.3 Difficulties of numerical relativity

Numerical relativity is an important undertaking, but it is also extremely difficult. Some
of the problems facing the practitioner are:

e the physical fields are the geometry; we cannot make a grid and throw fields at it, as
we usually do when solving partial differential equations numerically in other fields of
physics;

e setting up coordinate systems to tackle realistic problems is a daunting task;

e computations involving 3+1 dimensions and real physical scales are extremely large,
and are only becoming possible with current computer technology.

This last “complaint” is actually common to several fields of numerical physics: certain
phase transitions, bound states for quarks and many other solutions to specialized areas
of physics are still out of reach because of the sheer size of the problems. But the first two
problems are especially felt in numerical relativity, and account for much of the effort put
into this field.
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Section 1.4 Approaches to numerical relativity

Currently the only successful method in numerical relativity is finite differencing. It is
based on discrete differencing of differential equations in which one would map, for example:

0¢(x,1t) Dit1,t — Pi—1,t
oz - 2a

and so forth. The list of successful projects carried out with finite differencing is impressive.
To name just a few: Smarr et al. have simulated collisions of black holes in 1+1 and
2+1 dimensions (Smarr et al: 1976; Smarr: 1977; Smarr: 1979); Shapiro and Teukolsky
(1991) have investigated naked singularities numerically; Goldwirth and Piran (1992 and
references therein), and Laguna et al. (1991), have modeled inhomogeneous cosmologies;
Cook et al. (see Cook 1990) have produced initial data for black hole collisions in 341
dimensions; while Choptuik has made significant progress in adaptive grid algorithms.
Most of these results are presented the recent proceedings Frontiers in Numerical Relativity,
edited by Evans et al. (1989).

Many people work on finite difference methods, and several groups are preparing to
tackle the problem of black hole collisions in this way. Finite difference methods command
respect because several problems have already been solved. There are some difficulties
with this approach, among them the fact that the Bianchi identities are broken when the
Einstein equations are written in finite difference form. This means that if we evolve a
surface in time, future surfaces will not satisfy all ten Einstein equations. Another problem
lies in the choice of topologies: it is easy to program R3 and T topologies, but S or more
unusual topologies are much more difficult.

Another approach to discretizing relativity is Regge Calculus which is the focus of this
dissertation. I will introduce it in detail in the next chapter, but I mention some aspects
of it here to juxtapose it with finite differencing. Instead of discretizing the Einstein
equations directly we discretize the geometry of spacetime by triangulating it with four
dimensional simplices. Regge found that metric and curvature information live naturally
in this simplicial lattice: the metric is encoded in the lattice edge lengths and the curvature
is proportional to the deficit angles. This makes it straightforward to define a simplicial
analogue of the Einstein-Hilbert action, and then to obtain a set of algebraic equations
to determine the edge lengths. This is a more intrinsically geometric approach, and it
has many pleasant formal characteristics: unusual topologies are easily represented, the
Bianchi identities have a geometric interpretation (although there are some unresolved
issues pertaining to the contracted Bianchi identities; these are discussed in Chapter 7).
But, by the same token, it requires a high level of abstraction because simplicial lattices
are not as straightforward as cubic grids, and the information does not consist of tensors
defined at spacetime points, so a change of perspective is required.

Although very pleasing from a formal point of view, Regge Calculus has not been
explored numerically as much as finite differencing, and most of its original applications

have been in rather esoteric areas of quantum and classical gravityi.

¥ 1 list some past applications of Regge Calculus in the next chapter.
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Section 1.5 Summary of my approach and results

In the spring of 1991, following a suggestion by Warner Miller, I took on the task of making
Regge Calculus that “flexible tool” for numerical relativity. I have developed formalisms
and software to solve the Regge equations in the general case, and I have applied this
software to some cosmological models.

This dissertation contains a complete description of the methods I developed, and a
presentation of the results I have obtained with my software. Chapter 2 gives an intro-
duction to Regge Calculus. Chapter 3 introduces the various types of simplicial lattices I
use.

Chapters 4, 5 and 6 describe how my software formulates and solves the Regge equa-
tions: the way in which my software scans and understands the lattice, determines what
should be calculated and what should be specified, calculates deficit angles and Regge
equations, and then solves the Regge equations for both initial value data and time evolu-
tion. These chapters are very important because the entire strength of my approach lies in
the software’s ability to formulate and solve the Regge equations on its own. This allows
the scientist to experiment with several models with almost no modification of the code.

Chapter 7 discusses formal and practical issues that must be addressed before one
can make useful software runs: the Bianchi identities and the nature of constraints, of
diffeomorphism freedom and of lapse and shift in Regge Calculus. Chapter 7 introduces
the paper Lapse and Shift in Regge Calculus by myself in which I analyze all these issues
exhaustively. This paper, which is included verbatim, presents the most important results
on the viability of Regge Calculus in numerical relativity:

e four of the Regge equations associated with any vertex can be treated as constraints;

e four conditions per vertex can be specified freely, corresponding to a free choice of
lapse and shift;

e once lapse and shift values are specified there is no more freedom, and the gauge is
completely fixed;

e once the dynamical equations are solved, the constraint equations are nearly satisfied,
and they are proportional to the third power of the lattice spacing.
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Chapter 2: Introduction to Regge Calculus

In 1961 Regge developed a method for discretizing Einstein’s theory of general relativity
(Regge: 1961). Instead of starting with the field equations, he discretized the spacetime ge-
ometry, he then wrote the Einstein-Hilbert action for this skeleton spacetime, and derived
the skeleton equations from this action.

There are many steps involved in formulating Regge Calculus, and in reaching the
main result (the Regge equations). I will now carry out these steps. Other introductions
to Regge Calculus can be found in Regge (1961), Wheeler (1963, 1974) and Williams
(1986).

Section 2.1 Simplicial decomposition

Any “nice” manifold M can be decomposed into a collection of simplices glued together.
This simplicial complex will approximate the geometry of M up to a certain point. I will
now define simplices and show some examples of decomposition of everyday manifolds.

A zero dimensional simplex is simply a point P. In one dimension it s a line seg-
ment (P, P1). In two dimensions a simplex is a triple of points which can be inter-
preted as the vertices of a triangle: (Pp, P1, P2). In three dimensions it is a 4-tuple of
points (Py, Py, Py, P3) which defines a tetrahedron. A 4-simplex is a 5-tuple of points
(Po, Py, Py, P53, Py) which can be interpreted as the vertices of a 4-dimensional polyhedron.
See Fig. 2.1 for pictures of these low-dimensional simplices.

Simplices have certain properties which prompt their definition and their use in Regge
Calculus:

1. A simplex is a rigid figure. Simplices are always completely determined by the lengths
of the edges, whereas more elaborate figures (like a square in two dimensions) are still
floppy when the edges have been specified.

2. An n-simplex is the polyhedron in n dimensions with the least number of edges and
vertices, and can be used to build any other.

3. The definition of the boundary of a simplex is quite straightforward. In two dimen-
sions: O(Py, P, P2) = (Py, P1) + (P1, P2) — (Py, P2), and the generalization to higher
dimensions is direct. This makes them useful in defining integration of differential
forms on manifolds, and in formulating Stokes’ theorem (Flanders: 1963).

Fig. 2.1: A O-simplex (point), 1-simplex (segment), 2-simplex (triangle),
3-simplex (tetrahedron) and 4-simplex, respectively.



Chapter 2: Introduction to Regge Calculus 7

Now for some examples, in two dimensions first. The plane can be tiled in several ways,
two of which are quite straightforward. One very regular tiling is composed of identical
equilateral triangles; another consists of tiling the plane with squares and drawing diagonals
through the squares. These are the same triangulation, really, but with different initial

assignments of the edge lengths.

Fig. 2.2: Two decompositions of the plane, into
equilateral and rectangular triangles respectively.

The simplest approximation to a sphere S? is the surface of a tetrahedron: it breaks
the sphere into four triangles. This triangultion of S? is interesting because it also applies
to higher dimensional spheres: they can all be thought of as the boundary of the single
simplex in one higher dimension, since the simplex represents a ball of its dimension:
S™ = 0B™*t!. 82 can also be modeled by an octagon, and in fact by the surfaces of several

famous solids.

Fig. 2.3: Decomposition of S® into the surface of a tetrahedron,
an octahedron and a cube respectively.

A two dimensional torus T2 can be modeled by triangulating a rectangle and iden-
tifying opposite sides, so the triangulations shown in Fig. 2.2 for the plane can both be

clipped to model T2.
Three-dimensional flat space R3 can be tiled by decomposing it into a cubic lattice

and then triangulating the cubes properly (this is done in Chapter 3). The same applies
to T3: take a parallelepipedal chunk of R3 and identify opposite faces to get the torus
topology.

We can also decompose S2 in several ways. The simplest is the 5—tetrahedron model,
where the 5 tetrahedra form the boundary of the 4—simplex (Py, Py, P, P3, Py). There are
two ways of visualizing it: we can place the points Py, ..., Py at the origin and unit vectors
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of R*, and see the boundary of the 4-simplex as embedded in R*. Alternatively we can
draw a tetrahedron in R3, then glue four other tetrahedra to each face of the first one,
and identify the four points that stick out of this contsruction. The identification imposes
S3 topology on this complex (see Fig 2.4). There are two other decompositions of S3 with
identical regular tetrahedra: they have 16 and 600 tetrahedra (Wheeler: 1963, Collins and
Williams: 1973). Other triangulations will have non-regular tetrahedral blocks; see for
example our algorithm for triangulating S3 as the boundary of the 4—cube in section 3.2.

Fig. 2.4: Triangulation of S* taking a tetrahedron, gluing four other
tetrahedra to its faces and identifying their loose vertices P.

The examples shown above should help us understand how certain “frequently occur-
ring” four dimensional topologies can be triangulated. As it turns out, the four dimensional
spacetimes used in numerical relativity will always single out a time direction in such a
way that the the topology will be M®) x R. In Chapter 3 I will present two ways in which
I triangulate M®) x R given a triangulation of M®).

Section 2.2 The geometry of a simplicial lattice

Having discussed the topological decomposition of a lattice into a simplicial complex, we
are now ready to examine how the geometry of spacetime can be represented on this
simplicial lattice. The first thing to notice is that in Regge’s construction, each simpleXJr
is taken to have a flat interior. The inside of each simplex is a section of Minkowski space,
and all distances within the simplex can be calculated using flat-space methods. Since the
simplices are rigid, the geometry of the entire complex will be encoded in the edge lengths
of the simplices.

To formulate general relativity we must also identify the curvature in our simplicial
complexes. Regge did this by introducing the notion of a deficit angle. Let us first look
at this in two dimensions. Consider a collection of triangles hinging on a vertex P. The
sum of all internal angles > 6; at P should be a full angle 2. Buf if this point were on
a curved surface (see Fig. 2.5), the angles would not add up to quite 2. The difference

l From now on, if I don’t specify the dimension of a simplex explicitly, I will mean a
4-simplex.
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Fig. 2.5: Wheeler’s (1963) visualization of a deficit angle in two dimensions.

€, = 2w — Y _0; is called the deficit angle at point P. The scalar curvature curvature at P
is then given by €, divided by the area dual to P.

In three dimensions we can have several tetrahedra hinging on a common edge e with
length [.. Each tetrahedron will have a dihedral angle on e, and the sum of these dihedral
angles would be 27 in flat space. The deficit angle is e, = 2m — > . A; ., where A,
is the dihedral angle of tetrahedron ¢ on its edge e. The scalar curvature will then be
concentrated on edge e, and will be /.¢. divided by the volume dual to e.

N
=
\/

Fig. 2.6: Simplices in two, three and four dimensions hinging
on points, edges and triangles respectively.

As one might expect by analogy with the lower dimensions, in four dimensions we
contemplate a triangle ¢ with area A; upon which some simplices o; hinge. Each simplex
will have a dihedral angle A;; on ¢, and the sum of these dihedral angles would be 27 in
flat space. The deficit angle associated with triangle ¢ is then

a@=2m—> A (2.1)
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The scalar curvature is concentrated on the triangles, and is proportional to Ae; divided
by the 4—volume dual to ¢.

Section 2.3 The Regge action

We have seen that the scalar curvature is always concentrated on simplices of the dimension
of the manifold minus 2 (simplices of codimension 2) which we call hinges or bones. The
actual expression for the curvature is equal to the hinge volume times the deficit angle
divided by the volume dual to the hinge. We now want to write the Einstein-Hilbert

action in n dimensions:
Igg = /R\/\g\d"x (2.2)

for our Regge skeleton.

Since the volume element /|g| multiplies R in equation ( 2.2), we do not need to divide
by it in Regge’s expression for the scalar curvature R, and the action in n dimensions is
simply

IR = ZVhEha (23)
h

where h is the hinge of dimension n — 2, and V}, is the n — 2-dimensional volume of h.
Here is the expression for equation (2.3) in 2, 3 and 4 dimensions:

19 =%"e, (n=2) (2.4a)

P
I =3 e (n=3) (2.4b)
I =3 A (n=4). (2.4¢)
t

I will now pass to the derivation of the Regge equations from the Regge action, but
there are some comments that can be made on the curvature of simplicial complexes or
piecewise linear spaces, so I will insert them here.

For two dimensional manifolds M without boundary the Einstein-Hilbert integrand
is equal to the Euler class, hence the action is a topological quantity: the Euler number
for that manifold x,,. One consequence of this is that the action is a constant for a given
topology, so its variation 61 will always be zero and there will be no field equations in two
dimensions.

This translates to Regge Calculus: the sum of deficit angles in two dimensions is
always equal to x ., and there are no Regge equations in two dimensions.

In higher dimensions the Euler class is not proportional to the scalar curvature, so
the action is not a topological invariant. In n = 4 the Euler characteristic is given by

1
X = 982 /RagmsRWpaea'B“”e""Sp"\/ |g|d4x.
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Although Regge (1961) has written an expression for the full Riemann tensor RY, ,,, it is
not clear how to take powers of it. Cheeger, Miiller and Schrader (1984) have formulated
the Euler class for general piecewise linear spaces, and given much insight into the nature
of curvature for simplicial manifolds. Hamber and Williams (1984, 1986) have explored
Regge Calculus models of gravity with higher powers of R in the action.

A deeper understanding of the curvature of piecewise linear spaces is very important
in simplicial quantum gravity with higher order actions. It is not yet clear how useful the
results of Cheeger et al. will be in numerical Regge Calculus.

Section 2.4 The (remarkably simple) Regge equations

We now want to obtain the skeleton analogue of Einstein’s equations starting from the
Regge action. In the variational formulation of general relativity we vary the action Igg
with respect to the metric. In Regge Calculus the metric is encoded in the edge lenths, so
we want to take the variation of I with respect to the edge lenths [;.

Let us carry out the calculation. Let index % represent the edges, /; their lengths, and
t|; the triangles that hinge on ¢, then

8At 8675
0lp =9 A —0l; A ol;
. (z ) zz( it A )
Regrouping the terms in the sums, we can invert the order of summation:

=2 (S (e g )

The term 0A;/0l; is equal to cot @, ; (or 0 if edge ¢ is not part of triangle ¢), where
0: i is the angle opposite edge 7 in triangle ¢ as shown in Fig. 2.7.

Fig. 2.7: The angle 6, ; in triangle t.

The other term Oe¢;/dl; is much more messy, but Regge, in his original paper (1961),
proved that in taking the variation of Ir we can treat €; as constant. This streamlines the

expression for 0/g:
=Y (Z cot e) 5.
A t)s

Setting this equal to zero we get an equation for each edge ¢ in the lattice:

ZCOt Gt,iet =0. (25)

ti;
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These are the Regge equations. They are remarkably simple, thanks to the fact that

we can treat €; as constant when varying the actiont. There is one equation for each edge:
an algebraic equation which couples several edges from the triangles ¢|; surrounding ¢ and
the simplices in the entourage of t;.

Section 2.5 There is much more to say ...

Prima facie one might think that one can solve the equations for all the edges and thus
completely determine the edge lengths. As it turns out there is more to it than that.
We must understand if the equations are all independent, if any of the unknowns can be
specified, what to do on the boundaries (for example initial and final surfaces) when an
edge might not have a complete entourage with which to calculate the Regge equations.

So the derivation of the Regge equations is not the last step in formulating Regge
Calculus. We must address several other issues before we are ready to use Regge Calculus
as the “flexible tool” everyone used to believe it would become. That has been a major
part of my work in the past year and a half: I set out to make Regge Calculus into a viable
tool for numerical relativity, and have had to answer the questions mentioned above and
several others as well. My results will be presented in the remaining chapters.

Section 2.6 Past applications of Regge Calculus

Notwithstanding the absence, until now, of general 3+1 dimensional solutions, Regge Cal-
culus has had several interesting applications in both classical and quantum gravity, to-
gether with some very powerful mathematical results. T will mention a few here, and a
more comprehensive review together with a bibliography can be found in Williams and
Tuckey (1992).

e The Schwarzschild metric. Wong (1971) and later Collins and Williams (1972) worked
out approximations to the Schwarzschild metric. Williams and Ellis investigated the
nature of geodesics in simplicial spacetimes (1981, 1984), and Brewin (1988, 1989,
1992) completed this work obtaining the correct value for the precession of the peri-
helion of Mercury.

e Time evolution of model universes. Collins and Williams (1973, 1974) first solved
the Regge equations for the expanding universe using models of $3 with 5, 16 and
600 tetrahedron models. They made the same ansatz that is made in obtaining the
Friedman solution (isotropy and homogeneity), and came up with behaviour for the
scale factor which (in the 600 cell model) approaches that of the analytic solution.
Lewis (1982) worked out a solution for the flat Friedman universe and the Kasner
universe using cubic blocks, and showed that the solutions approach the analytic
solution as the lattice is refined. This type of simulation is one of the goals of numerical
relativity, but these particular models do not hold any promise for going beyond the
known analytic solutions.

I As it turns out, in Chapter 6 I will return and actually take the derivative of the
deficit angle because it is used to calculate the Jacobian.
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e Quantum gravity in three and four dimensions. Ponzano and Regge (1968) showed
that there is a relationship between the 65 symbols used in quantum mechanical angu-
lar momentum theory and the path integral for 2+1 dimensional Regge Calculus (see
also Hasslacher and Perry: 1981). This has not yet been used to calculate amplitudes
in 241 dimensional quantum gravity, but it is a surprising and elegant result.

Rocek and Williams (1982, 1984, 1985) studied the propagator and the nature of
conformal transformations in four dimensional Euclidean quantum Regge Calculus.
More recently Hartle (1985, 1986) has investigated simplicial minisuperspaces in an
attempt to carry out the path integral for the wave function of the universe.

e Two dimensional quantum gravity and random surfaces (Boulatov et al.: 1986). A
couple of years ago there was a burst of activity in the field of random surfaces: a
method of discretizing the Polyakov path integral for the bosonic string. Together
with the introduction of scalar fields on the two dimensional curved manifold, this
method allowed the numerical computation of path integrals for Polyakov strings. It
was also found that path integrals for random surfaces are related to the perturbation
expansion in matrix models, but it was only possible to carry out the calculations for
strings living in less than one dimension.

e The Null Strut Calculus. Developed by Miller (1986¢, 1988), this was the first attempt
to solve the Regge equations without imposing symmetry: a full 3+1 scheme. Null
Strut Calculus is a modification of Regge Calculus in which three dimensional blocks
on successive spacelike surfaces are connected by null edges. This drastically simplifies
the formula for calculating volumes and deficit angles.
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Chapter 3: Simplicial Lattices

Tullio Regge (1961) chose simplicial blocks to decompose spacetime manifolds, rather than
cubic blocks. One advantage of a simplicial block is that it is “rigid”: this means that the
block is completely determined by the lengths of the edges.

Regge Calculus has also been formulated for complexes containing some non-—simplicial
blocks. Collins and Williams (1974) and Lewis (1982) use trapezoidal faces in their cosmo-
logical models, re—deriving the Regge equations from the action to account for the different
types of hinges. Miller (1986¢, 1988) developed the Null-Strut Calculus, a version of Regge
Calculus in which spacelike hypersurfaces are connected by null (zero—length) edges; this
greatly simplifies the equations. Null-Strut Calculus also uses non—simplicial blocks. In
all of these schemes some extra conditions have to be imposed to “rigidify” the spacetime
blocks.

In my formulation I have chosen to use only simplicial blocks. This has made it
possible to write software which figures out the Regge equations and their derivatives on
its own, with no hard—coded functions and very few assumptions (see Chapters 4, 5 and 6).
This has allowed me to radically change my choice of lattice, of constraints, and of lapse
and shift and never have to change the mechanisms by which the equations are calculated
and solved.

3
— Zn+3

3
_—— Zn+2

time

3
e Zn+1

-5 3
2,

Fig. 3.1: A sequence of thin spacetime sandwiches.

I build the four dimensional lattice from a sequence of “thin” spacetime sandwiches,
each sharing a slice of bread with the previous and next layers. This is done so I can
formulate an initial value problem on the first sandwich, and then evolve it in time in
small increments. The boundaries of each sandwich are three dimensional hypersurfaces,
approximated by tetrahedral complexes. The middle region of each sandwich is a layer of
four dimensional spacetime, approximated by a complex of 4—simplices.

In this chapter I give my prescription for triangulating the three dimensional surfaces
and then the four dimensional sandwiches.
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Section 3.1 Mock coordinates

In formalism presented here I do not introduce coordinate systems inside the simplices,
but I do use “mock” coordinates to identify points in the lattice as I draw up the lists of
tetrahedra and simplices. This is because I typically generate lattices starting with cubic
lattices and triangulating the cubes. Mock coordinates are simply integer grid coordinates
(¢,7,k,t), where 0 <=4 < ngz, 0 <=j <ny, 0 <=k <n, and t =0, lor2.

Mock coordinates should not be taken too seriously: they are merely an algorithmic
aid in setting up the initial spacelike surfaces, and the (i, j, k) coordinates will rarely give
a good indication of the space coordinates of a point in the lattice. For example, when
r3+1 builds the five tetrahedron model of S3, it chooses n, = 5 and n, = n, = 0, which
means that the five coordinates points in S2 would all be on the z axis, which does not
make much sense. That is why I call them mock coordinates.

Section 3.2 3D lattices: T°

The simplest three dimensional manifold (without boundary) to triangulate is the three—
torus T3. To get a better grasp on this it is easier to examine the situation for T2: we
take a triangulation of a rectangle and identify all points and edges that are on opposite
sides of the rectangle.

Fig. 3.2: Representation of T? and T?: triangulate a rectangle (or cube)
and then identify the opposite sides (or faces).

Triangulating T3 is completely analogous: take a three dimensional cubic grid with
dimensions ng, ny, n, and identify the points (7,7, k) with ¢ = 0 and i = ng, j = 0 and
J =ny, k=0 and k = n,. This wrapping function gives us the T3 topology.

We now have a collection of N = ng - n, -n, cubes, and we decompose each individual
cube into six tetrahedra by adding diagonal braces as in Fig. 3.3. If we call the vertices of
the cube A, B,C, D, E, F,G, H, then the six tetrahedra will be {A,C,G,H}, {A,C, D, H},
{A,B,D,H}, {A,B,F,H}, {A,E,F,H} and {A,E,G,H} etc...

This scheme guarantees that when two cubes are connected on a face, the triangles
that form that face on each cube will match. This is called the Quantity Production Lattice
(QPL) (Miller: inchworm, dissertation).
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Fig. 3.3: A single cube broken down into six tetrahedra
in a manner consistent with its neighbours.

Section 3.3 3D lattices: S°

Making an arbitrarily fine simplicial lattice with T2 topology is quite straightforward. It is
more difficult to do the same with S2 topology. There are only three regular complexes that
model S3: the 5—cell, 16—cell and 600—cell models (Wheeler: 1963, Collins and Williams:
1974), so using triangulations of S® with regular tetrahedra is not possible.

One solution is to notice that the boundary of a 4-cube OC* has the topology of a
3-sphere. If C* is triangulated into 4-simplices, then its boundary will be automatically
triangulated into tetrahedra. I use this method for generating S® surfaces of arbitrary
resolution. The drawback is that, if the edge lengths are inherited from the 4-cube, the
resulting surface will be flat in most regions and will have all its curvature concentrated at
the corner impurities. This can be solved by assigning edge lengths throughout the sphere
in such a way as to smooth the curvature out.

One straightforward algorithm for doing that consists of formulating an average scalar
curvature R for each hinge (in three dimensions the edges are the hinges on which curva-
ture is concentrated, in two dimensions each point is a hinge). The we shorten all edges
connected to the hinge h, except the hinge itself. This has the effect of reducing the deficit
angle e,. We can then compare the value of €, /V}, (where V}, is the volume dual to hinge
h) to the average curvature R, and continue this process until the deficit angle is close to
the required curvature.

Let us look at this in detail in two dimensions, where the S? is modeled as the
boundary of a cube. Assume that each face of the cube was divided into N squares, hence
2N triangles. Then we have 8N vertices in the triangulation, of which 8 are saddled with
a deficit of 47/8 = 7 /2 at the beginning. The average curvature we would like to have for
each angle is 47 /(8N).



Chapter 3: Simplicial Lattices 17

So we run through each vertex P, calculate the deficit angle €, , divide it by the area
element A, and compare it to the desired average scalar curvature, and keep increasing or
decreasing the edges attached to A until the we get a smooth average scalar curvature.

When I describe my algorithms for solving the Regge equations I will come back to
the impurities in the S3 lattice to discuss the fact that there are fewer Regge equations in
the region containing the impurity. This is the other difficulty that has to be addressed
before large scale S models become viable.

Section 3.4 4D lattices: straightforward

Given a triangulation of a three dimensional surface ¥3, we now want to break X3 x R
into 4-simplices. Since we are working in a thin sandwich formulation, it is sufficient to
triangulate 3 x I, where I is the interval on the real line, and piece several of these
sandwiches together. The most straightforward algorithm for doing so is:

(1) assume we have a triangulation of the 3—surface ¥ made up of tetrahedra T, whose
vertices are labeled [T¢, T, T4, Tt]; similarly, X3 41 will be triangulated in the same
manner, with vertices labeled Til; it is crucial that the points in each tetrahedron be
ordered: T¢ < T¢ < Ti < Ti: this will be used in the proof of consistency given below;

(2) for each tetrahedron T* form the four dimensional prism T¢T%';
(3) break the prism down into four 4-simplices with vertices:

i i i i il

[Ts, T1, T3, T3, T3] (3.1a)
% % i i/ !

[T[)a T17 T27 T2 ) T3 ] (31b)
Z- . .I 4, 4,

[To, Ty, Ty, Ty, T3] (3.1¢)
. 4, .I .I .I

[To, To , 11, Ty, T3] (3.1d)

Tl Tl

Fig. 3.4: Three and four dimensional prisms, broken up into simplices.
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We now have a triangulation of each prism, but in putting together the simplices in
two adjacent prisms we must be sure that there are no inconsistencies. Two prisms share a
parallelepiped, and in the process of triangulating the prisms, this boundary parallelepiped
will be triangulated into tetrahedra. Consistency here means that the two different trian-
gulations of the boundary parallelepiped must match. In other words, the diagonal braces
inserted to triangulate the prisms must be the same on the boundaries.

I will prove that the algorithm above is consistent in 241 dimensions, but the proof
does not make any reference to two dimensions, so it is correct in general. Consider two
prisms TT’ and UU’, where T, U, T' and U’ are triangles on the present and future surfaces
respectively. Also assume that the bases T' and U share an edge Ty = Uy, T1 = U;, and
the same for T/ and U’. This means that the prisms themselves will share a timelike
quadrilateral face. When we carry out the triangulation in the algorithm above we will
introduce diagonal braces ToT} and UyUj, but never U, U}, because of the ordering Uy < Uy.
These braces will be the same for both prisms. Because of this ordering of points in 7" and
U, we will never have the situation where Ty = U;and 17 = Uy, which is the only way in
which inconsistent braces could be introduced when triangulating adjacent simplices.

Section 3.5 4D lattices: the teepee lattice

I use the 4D lattice presented in the previous section to generate initial data on the first
sandwich. This usually gives rise to large systems of coupled equations: for a spacelike
lattice with 3 x 3 x 3 vertices, we end up with a system of 216 algebraic equations with
216 unknowns. When this system is solved with Newton’s method, each iteration involves
solving a system of 216 x 216 linear equations. In general, with N = n, x n, x n, points
on a surface, the initial value problem will involve 8 N x 8 N systems.

If we were to solve the time evolution problem using this kind of lattice, each time
step would involve an 11N x 11N system. Each iteration in Newton’s method would
be extremely slow in converging. To get around this problem, Barret et al. (1992) have
developed a four dimensional lattice which effectively decouples the Regge equations used
for time evolution into an eight-stage evolution procedure in which at each stage we only
solve 15 equations for 15 unknowns. In this section I describe the lattice construction
which allows breaking evolution down into stages.

Assume that we have three dimensional surfaces ¥3; and X%, already triangulated
with the QPL. The vertices in 3% are uniform: each vertex has the same number of
spacelike edges emanating from it, and these edge lengths are periodic. One can form a
template describing all the spacelike edges emanating from a point (Fig. 3.5) and translate
that template from point to point to generate all the spacelike edges in the lattice.

In generating what I call the decoupling or teepee lattice I break the uniformity
between points. Referring to Fig. 3.3 we will partition vertices on ¥2 into 8 types: A, B,
C, D, E, F, G, H according to their “mock’ coordinates in the cubic lattice of origin. To
make this procedure clear, I will outline it in 1+1, 2+1 and 3+1 dimensions.

e In 141 dimensions the spacelike hypersurface is one dimensional. This line is broken

up into segments (one dimensional simplices) which will have mock coordinates 0, 1,

2, 3, ... Call the even points 0, 2, 4, ... A-type vertices, and the odd points 1, 3,

D, ...B—-type vertices. Focusing on an A-type vertex, call the adjacent vertices By
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Fig. 3.5: A template of spacelike edges emanating from a point in
Y3 in both the cubic lattice and the QPL.

and B_, and call their images on the future surface A’, B, and B’ (see Fig. 3.6).
Now we lift the teepees: extend edges from A’ to A, B, and B_. This is the A-teepee.
Then connect B!, to By and to A’, and B. to B_ and A’. This generates B-type
teepees which lean on their A-type neighbours.

A
B B B A

Fig. 3.6: The teepee lattice in 1+1 dimensions (with A—type teepees shaded).

If we now examine what edges are needed to calculate deficit angles at an A-type of
vertex, we see that we only need information from the past sandwich and the edges in the
A-teepee. This means that we can solve for that portion of lattice before we examine the
B-teepees. The process of time evolution would now be split in two stages.

e In 241 dimensions I introduce four types of teepees. The steps are:

1.

RNl

e

Label the edges of a two dimensional QPL: A (mock coordinates (21, 25)), B(2i+
1,24), C(2i,2j +1) and D(2i + 1,25 + 1).

Erect vertex A into the future point A’.

Connect A’ to the neighbouring B, C, D-type vertices. This forms the A-teepee.
Erect vertices of type B into the future B'.

Connect B’ to its respective A’, C and D vertices. Notice that brace B’A’ is an
edge in the (N + 1)** spacelike hypersurface.

Erect C to C' and connect C’ to its respective A’, B’ and D vertices.

Erect D to D' and connect D’ to its respective A’, B’ and C’ vertices. Notice
how D’ only has one connection to the N** surface.

The edges forming the A-teepee (not including the surface ¥3;, which has already
been solved) are AA’, ByA', B_A'", CL A", C_A', Dy A', D_A’: 7 edges which must be
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DA AVAVAY
NAVAVAY

N

Fig. 3.7: The teepee lattice in 2+1 dimensions; the solid
lines are A—type teepees, the dashed lines are B—type.

determined to solve the A—teepee. We then need 7 equations to solve for these, without
relying on any edge except the past sandwich and the A-teepee. If we examine the edges
ABy, AB_, ACy, AC_, AD,, AD_, AA’, we see that calculation of the deficit angles on
these edges does not take us outside of the A-teepee, thus we have 7 Regge equations with
which to solve for the 7 unknowns in teepee A.

We can make a similar analysis of the B—teepee, and we find that using only edges in
the past sandwich and in the A-teepee (which has already been solved) we can determine
the remaining unknowns. The same goes for C' and D—teepees.

e In 3+1 dimensions (see Fig. 3.3 and Fig. 2 in the paper included in Chapter 7) I
identify eight types of edges (A, B,C, D, E, F,G, H) and carry out the same algorithm
as in 241 dimensions, just with more vertex types.
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Chapter 4: Formulating the Regge
Equations: Scanning the Lattice

In this and the next two chapters I will describe the collection of methods I use to formulate
and solve the Regge equations in the general case. This is a very difficult task, and it
requires sophisticated data structures and traversal algorithms, and the development of
new formalisms at several stages. In this chapter I describe how my software intelligently
scans the lattice, so that it can apply the equations presented in the next two chapters
chapter to do all the calculations needed for the Regge equations and the Jacobian matrix.

To organize this chapter I will present the methods in the order in which the software
operates. My program r3+1 first prepares the three dimensional triangulation of 32, then
the four dimensional triangulation of X3 x I; these triangulations are described in previous
chapters. Then r3+1 scans the list of simplices and extracts from it lists of edges and
triangles in the lattice, and useful cross-referencing data. It re-scans the lattice again
for a list of what simplices hinge around each triangle. Then it assigns initial lengths to
these edges according to a metric which the user can program in. The program can now
understand the lattice so well that it can begin calculating dihedral angles, deficit angles,
Regge equations and their derivatives.

I will now describe this analysis of the lattice in depth. A warning: this chapter
describes in some detail the algorithms and software I have developed, and makes several
references to actual C and C++ code. You can skip this chapter and take all this lattice
analysis as a black box. Chapters 5 and 6 will still describe the workings of the program,
but will focus more on the calculation of volumes, angles, Regge equations, Jacobians and
so on: it is back in the realm of physics rather than computer science.

Section 4.1 Software history and overview

The r3+1 program is completely original. I started writing it on paper in the summer of
1991, based on an experimental 241 dimensional version I had developed in May of 1991.
The first successful calculation of deficit angles and Regge equations was in October 1991.
The first correct calculation of the Jacobian for the Regge equations was in January 1992,
and in March I was looking at the first general solutions for the Euclidean initial value
and time evolution equations. In April I implemented the teepee lattice and adapted the
software to C++ so that I could introduce a timelike tag to edge and volume arithmetic,
allowing the user to choose a Minkowski signature. At the same time I was introducing the
definitions of lapse and shift presented in Chapter 7 and (Galassi, 1992a), and I introduced
a general mechanism to program in a fit to an analytic metric for generating the initial
data.

I developed the software using GNU emacs, the GNU C++ compiler and the GNU
debugger (gdb), running alternately on Silicon Graphics equiptment (at Stony Brook) and
Sun workstations (in Los Alamos).

The principal r3+1 program consists of about ten thousand lines of C++ code. It has
a visual interface which makes use of the unix cursor management package curses, and
which allows the user to probe any aspect of the lattice structure, and find out any length,
area, deficit angle, connectivity information or Regge equation at any time. Any edge
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length in the lattice can be modified in real time by the user, a very useful feature if one
wants to perturb away from a known solution.

The user can choose the type of lattice, the method of solution of the Regge equations
(direct search or Newton’s method), the method of calculation of the Jacobian (analytic or
numerical), the lattice spacing, the lapse and shift settings, and several other parameters.
The user is also prompted with choices to solve the initial value problem or to carry out
time evolution steps.

Section 4.2 Hashing

A very powerful method for storing data for quick retrieval is the hash table. A very
complete treatment of hashing can be found in Knuth (1973, vol. 3) and Tannenbaum et
al.. Gentle explanations with less detail can be found in van Wyk and Aho et al.. To
set the scene for describing hash tables, let us look briefly at some more common data
structures. For the examples here I will use a set of n data points in which an individual
record is described by a C structure which could be called einfo:

/* structure with edge information */
int pl, p2; /* endpoints of that edge; also the search key */
int edge_ind; /* index into the list of edge lengths */

A typical search will involve asking for the edge index corresponding to the end points
(p; @)-

If this data is stored in a straight list, then we search for the element with key (p’, ¢’)
by examining each element of the list in to see if it matches: p = p’ and ¢ = ¢’. This
procedure, called a sequential search can take quite some time if we have a large list: it
involves involve O(n) retrievals and comparisons.

One improvement is to sort the list by key (one has to assign an ordering to pairs
of points (p,q) to do this), and then implement a dictionary-style search called a binary
search. In a binary search one takes the midpoint of the sorted list, checks if the search
key is greater or less than the midpoint (or equal if we are lucky), and restricts the search
to half of the list. This procedure is repeated recursively until we home in on the correct
key. Binary search is an O(log,n) algorithm, which makes for extremely fast retrieval,
but one must sort the list (which can be time consuming) and store it in an array, which
means that it can only be used if we know beforehand how much data we will have, so we
can store it all in a big array.

The fastest way of looking up data is by table lookup. Suppose there were a unique
integer key for an edge information structure e: k(p,q). Then we store the edge structure
in an array element estruct_array[k(p, ¢q)]. When we are looking for the record with key
k we just retrieve that element. This is the fastest possible algorithm: it takes constant
time to retrieve data, no matter how large the list, but it requires that £ map injectively
into the data array.

Hashing is a modification of table lookup, appropriate for cases in which the function
k(p, q) is not injective. If we can produce a function h(p, ¢) which maps (p, ¢) to an integer
in a range [0 ...hsize-1], and which is almost injective (in that it scatters the data
quite randomly throughout [0...hsize-1] with few repetitions), then we can try another
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scheme. We define an array ehashtabl[hsize] of size hsize, and store structure e (with
points (p, q)) at location ehashtab[Ah(p, ¢)]. The function h(p, q) is called a hash function.
So far it looks just like table lookup, but there is a catch: since h(p,q) is not perfectly
injective, we might have a clash where two sets of endpoints (p, ¢) and (r,s) map to the
same value under h: h(p,q) = h(r, s); so we must handle this collision in both the storage
and retrival of e. There are several schemes for collision resolution; I will now present some
of the more common ones, including the one I use in r3+1.

One method is to look for a free space in the table, starting with h(p,q) + 1, and
put e in that free slot. The same would be done in searching: we look for (p,q) in the
hash table starting at h(p,q). If ehashtabl[h(p,q)] is not the entry we wanted, we try
ehashtab[h(p,q)] + 1, and ehashtab[h(p,q)] + 2 until we find the correct entry, just
as in the sequential search mentioned above. This is called resulution by open addressing;
it is a primitive scheme that tends to cause clustering about a few points. There can be
long sequences of “busy” cells, which will force us to frequently do long linear searches.
Deletion of a record is also very difficult with open addressing because the table has to be
reorganized after any element is deleted.

An improvement on open addressing is linear probing in which we try to place “col-
lided” data items at ehashtabl[h(p,q)] + p, ehashtab[h(p,q)] + 2p and so on. Cluster-
ing is reduced if p is a rather large number relatively prime to hsize. This scheme reduces
clustering, and performance will be good until the table is nearly full.

Both open addressing and linear probing are static: there is no provision to make the
hash table grow if new records are added. To address this problem, and to present a better
solution to the problem of clustering, we can introduced collision resolution by chaining,
where each node in the hash table is the head of a dynamic data structure, typically a
linked list. A diagram of this form of storage is shown in Fig. 4.1. The hash table can grow
forever because the linked lists are dynamic data structures. Of course, once the linked
lists become too long then the search time increases from being approximately constant
to being limited by the time it takes to search a linked list. If hsize is the size of the
hash table, and m is the number of elements in the table, the average number of probes
required for a search is O(hsize/n), which is bounded as n — oo if we always keep the
table large enough that the load factor hsize/n is not too close to 1. Detailed analysis of
hash table performance is presented in Knuth (1973, vol. 3) and Tannenbaum et al..

0 1 p p+l p+2 p+3  p+4 hsize-3 hsize-2 hsize-1

NULL P NULL NULL P NULL

NULL NULL| [NULL

NULL

NULL

NULL]|

Fig. 4.1: A chained hash table with linked list collision resolution.
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Similar schemes use binary trees instead of linked lists to do resolution by chaining;
the difference only becomes noticeable when the number of chained records becomes large,
which is usually a hint that it is time to increase the size of the hash table; so there are
few cases in which a more sophisticated chain is needed.

When we decide to use hashing to store and retrieve data we must make a few choices
that will have great influence on the performance of our searches. We choose the hash
function h which operates on the key of record e (in our case h is a function of points p
and ¢, which are parts of the record e); we choose a size for the hash table; and we choose
a method of collision resolution. A good hash function is one that will scatter the data
in such a way that few records collide. Perfect hash functions cannot always be found,
but there are good heuristics to help choose a nearly optimal function. The size of the
hash table is usually chosen to be a prime number (or a number with few divisors), and
approximately the same size as the number of records we expect to have.

In r3+1 I make use of chained collision resolution with linked lists; I choose my hash
table size to be the number of records minus 1; and I use the hash function

h(p,q) = [p+ (¢ << 4)] mod hsize

where ¢ << 4 means left shifting ¢ by 4, effectively multiplying q by 2* = 16. This set
of choices works nicely for the hashing of edge information by endpoint—pairs: in all the
simulations I have run I never have more than three records chained in a list, and the hash
table does not have too many zero entries.

Section 4.3 Storage and retrieval of edge information

We start with a list of simplices stored as 5-tuples (P, Py, Ps, P, Py), where each P; is
the label representing a point. Each simplex will have ten edges P;P; for ¢« < j, which
suggests a very straightforward algorithm for generating a list of all edges in the lattice:
we run through the entire list of simplices and add the ten edges contributed by each to a
hash table of edges. There will be several cases in which more than one simplex contains
a given edge, but it is possible, and easy, to verify if an edge identified by its endpoints P;
and P; is already in the hash table.
The algorithm for forming the edge information hash table is quite straightforward:

(1) prepare a counter called edge_index which will record the position of each edge we
add to the hash table; set edge_index to zero;

(2) loop through all simplices o = {0y, 01,049, 03,04} in the manifold;

(3) loop through all pairs of points (0;,0;) where ¢ < j for simplex o;

(4) see if (04,0;) is already in the hash table; if it is, pass on to the next pair of points
(i.e. return to step 3);

(5) otherwise form an edge information entry with points (0;,0;) and edge_index and
add it to the hash table; now increment the edge_index and continue looping through
all point pairs (step 3).
We now have information about evey edge in the lattice, and we want to assign lengths

to all the edges. One way would be to add a field
double length; /* length of this edge */
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to the edge information structure, but it turns out to be convenient to keep all the actual
edge lengths stored in an array, so I allocate an array edgelengths[] for this purpose,
and index it by the edge_index value for each edge.

The value of each edgelength is then initialized to some “guess” of the value of the
metric. These edge lengths can now be retrieved very quickly (at hash table lookup speed)
from their endpoints (p,q) by finding the hash table entry of h(p,q) and extracting the
edge index, and using that to find the edgelength. This quick retrieval of edge information
from the edge’s endpoints was my goal in designing these data structures because r3-+1
does this kind of operation all the time.

The other operation involving edges and their endpoints is: given an edge index, what
are its endpoints? This information can be obtained by straight table lookup without need
for hashing, so I keep an array of point pairs indexed by the aforementioned edge index.

Section 4.4 Storage and retrieval of triangle information

A similar set of operations has to be carried out for the triangles in the lattice: deficit
angles are associated with triangles, and they play a crucial part in calculating the Regge
equations and their derivatives. Because of this we need a mechanism to retrieve triangle
information from the three points that define a triangle. This is entirely analogous to the
problem of obtaining edge information from the edge’s endpoints, and I solve it in the
same way in my software.

The program forms a hash table for triangles with a hash function defined on point
triples. The function I use is

h(p,q,7) = [p+ (g << 4) + (r << 8)] mod trihash size

which is completely analogous to the hash function for edges.

The triangle hash table is filled, just as the edge hash table was, by running through
all simplices o, taking triples of points oy, 0, o (i < j < k), and adding them to the hash
table with care to avoid duplication.

Section 4.5 The triangle entourages

In calculating deficit angles the software will frequently need to calculate the sum of all
dihedral angles about a given triangular hinge t. To do so it must find all the simplices
that share ¢, and associate them with ¢ (this is called the entourage of t). This is the last
and most lengthy of the lattice-scanning procedures, but it only has to be done once for
a given type and size of lattice, after which the entourages can stored in and read from a
file.

Although slow, the algorithm for calculating the entourages is quite simple:

(1) loop through all triangles ¢ in the lattice;
(2) loop through all simplices o in the lattice;
(3) if o contains ¢, add it to the entourage; otherwise pass on to the next simplex.

It is probable that exhanging steps (1) and (2) and adding some smarts will increase
the speed of this algorithm, but I have not yet found a need to speed this one up.
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Chapter 5: Formulating the Regge
Equations: Calculations

The Regge equations are given in equation (2.5). They involve the deficit angles associated
with triangles and the internal angles of said triangles, so to actually calculate the Regge
equations we need a collection of formula for determining angles in our lattice. In this
section I will describe how I calculate angles, and put the angles together to calculate
the Regge equations. I will first discuss the FEuclidean case, where the flat space metric
is gy = 0, and then introduce a Minkowski signature. The next chapter describes the
calculation of the Jacobian.

Section 5.1 General relativity without coordinates

Regge (1961) titled his seminal paper General Relativity Without Coordinates. This is
because in a Regge lattice all information can be obtained from the edge lengths, and
there is no need to introduce coordinate systems within each simplex. Some practitioners
of Regge Calculus do indeed introduce coordinates as an aid in calculating deficit angles
(Collins and Williams: 1973; Brewin: private communication), but following Wheeler
(1963) and Miller (1986¢), I prefer to stay away from coordinate systems and opt for the
simplicity of deriving every quantity from the lattice edge lengths.

Here are some examples in two dimension of how quantities associated with triangles
can be calculated from the triangle’s edges. Referring to Fig. 5.1, where the edges are [y, o
and a, the angle between /; and 3 is 6, the half-perimeter of the triangle is s = (I1+12+a)/2,

and the area is A:
21119

inf = 5.1

sin 1 (5.1)
13 +12—a?

= — 2

cos 6 TR (5.2)
l2 l2 42

cotf = % (5.3)

A=/s(s—11)(s —l2)(s — a) (5.4)

1 1/2 a’ %(02 - l% - l%)

Equation (5.4) is Heron’s formula which expresses the area A in terms of the edge
lengths alone. The determinant form of this is equation (5.5), shown in Wheeler (1963)
together with a demonstration of how it generalizes to higher dimensional volumes.

So the two dimensional dihedral angle (an ordinary angle, that is) can be calculated
from the formula for sine or cosine (or both can be used to figure out the correct quadrant);
these can in turn be calculated from edge information alone, showing that deficit angles can
be obtained from the edge lengths. This generalizes to higher dimensions: contemplating
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hinges

Fig. 5.1: A triangle and a tetrahedron with everything marked
to guide us through writing formulze.

the tetrahedron in Fig. 5.1: A;, the dihedral angle hinging on /1, A; and A, are the areas
of the triangles that share /1, V' is the volume of the tetrahedron. We have:

) 3A, Ay
sin A; = e (5.6)
P Hln Gt
]_ 1/2 2 2 2 2 2 22 2
_ 1 2_12, 41 9 2_2. 41
Vo e e g e &
H=ls+ls G-l +0 12
2 2 3

Let us increase dimension once more: consider a 4—simplex, and one of its triangles .
Let A; be the dihedral angle formed by the two tetrahedra hinging on ¢, then:

4V1(3) V2(3)

sin At = 2V(4)

(5.8)

where V1(3) and VZ(?’) are the tetrahedra defining the dihedral angle. So far so good, but
the formula for four dimensional volumes V®) is extremely complicated:

12 B-tl,+l  B-l,+l  B-U,+1

2 21 2 2 2 2 s 3 o

(1) 1 1/2 L=l +05 l% —-1l55+1; =14+

= — det 2 2 2 )
M Bl B Bt (5.9)

2 3 2 2 s 2 23 2 2
Wla+l B0+l 15,40 12
2 2 2 4

This determinant has many terms and is expensive to calculate, but it is a necessary
step in the calculation of deficit angles. There is also a cosine formula in higher dimen-
sions, analogous to that in two dimensions which comes from the cosine theorem. In four
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dimensions it is:

1
COSA} = ——————
3)¢,(3
36V V4V,
1212, 412 —BH3 B, B33+
2 2 2
% det 242, 415-12, Ba+13,—13, —, 13, 3,13,
2 2 2
—BH, 12, 3,12, g +H5,—134
2 2 2

(5.10)

We can use either the cosine or the sine formula to determine the hyperdihedral
angles. Knowing beforehand in which quadrant the angle will be is useful because we can
choose either one. If we don’t know a priori then we can use both sine and cosine values
to determine the quandrant. This gets more complicated when I introduce a Minkowski
signature.

These are the principal formula we need to calculate the deficit angles, Regge equa-
tions and (when we take their derivatives) the Jacobian matrix. They all depend only the
edge lengths of the lattice, and there has been no need to introduce any other considera-
tions.

Section 5.2 Minkowski signature

The formulzae I presented above are all valid in Euclidean space, but need to be modified in
a Minkowski setting. The easiest way to do this is to assign a tag to all timelike edges and
define a new arithmetic between geometric quantities. The product of timelike quantities
is a spacelike quantity with negative magnitude, the product of timelike with spacelike
quantities is timelike, and the product of spacelike quantities is spacelike. This arithmetic
is identical to that of real/imaginary numbers: let the timelike tag be a multiplicative
factor of v/—1, carry out the imaginary number arithmetic, and the results will be correct.

This allows us to take all the equations presented above and use them, with the
understanding that some of the edge lengths involved are imaginary, and the operations
are not real number operations any more. When setting initial values for the edge lengths
we set the straight timelike edges to be imaginary. The diagonal time-directed edges will
then be reall and the edges on the spacelike surface will be real.

Examining Eqgs. 5.1-5.9 we see that they always depend on the squares of the edge
lengths. The volume formulae have a square root, but the quantity in the square root
will always be a pure real number, either positive or negative. This means that we will
always have either purely real or purely imaginary quantities. Wheeler (1963) suggests
that we assign real areas and real deficit angles to timelike triangles, and imaginary areas
and deficit angles to spacelike triangles. This means that the product A;e; will always be

T This is true if the lapse is smaller than the characteristic spacing, which should almost
always be the case; see the discussion of the Courant condition in the Lapse and Shift paper.
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real, and the Regge action ), Ae; will be real too, and the Regge equations will be real
or imaginary according to whether they are associated with a real or imaginary edge.

Having all these elements we can calculate the deficit angle associated with an arbi-
trary triangle ¢:

(1) start with ¢; = 2m;

(2) loop through the entourage of simplices o, surrounding ¢

(3) calculate the hyperdihedral angle A, _ . from the sine and cosine formula above and
subtract it from e;.

And here is the algorithm that calculates the Regge equation for an edge e;, assuming
that the deficit angles have already been calculated and stored in an array angles[].
(1) initialize the i*" Regge equation E; = 0;
(2) loop through all triangles ¢ that hinge on edge e;; the deficit angle is ¢; = angles|t];
(3) obtain the cotangent of the angle in ¢ opposite to e;—call it cot_theta;
(4) add cot_thetaxangles[t] to the Regge equation E;.

After cycling through the entourage of e; we are left with the Regge equation E;.
Now we know how to calculate the Regge equations, let us try to solve them!
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Chapter 6: Solving the Regge equations

In Chapter 4 I described how r3+1 makes all lattice information readily available so
that it can formulate the Regge equations; in Chapter 5 I showed how deficit angles and
Regge equations are calculated. Here I describe the procedures I use to solve the equations.
In Section 6.1 I start with a discussion of what data should be specified and what should
be solved, and I translate that into the data structures used to specify effective equations
and unknowns. In Section 6.2 I outline Newton’s method in multidimensions, and show
how it is used. Finally in Section 6.3 I describe my dartboard procedure for calculating
the Jacobian matrix.

Section 6.1 What to specify and what to solve

One important question to be solved is which edges need to be specified and for which
must we solve the equations. In my introductory chapter on Regge Calculus I mentioned
that I do not solve all the equations for all the edges, rather I form two mappings that
pick out the dynamical equations and unknowns from the entire edgelist[].

To give an example, let us say that we are doing time evolution of an A-type teepee
with N3 = 4 x 4 x 4 = 64 points on the spacelike grid. Then for the two spacetime sand-
wiches we are considering we have 22N3 + 15N3 = 2368 edges involved in our calculations.
But in the teepee lattice (see the paper in Chapter 7) we only have 11 Regge equations
(plus 4 lapse and shift conditions) for 15 unknowns, so we form a map which translates the
11 equations into edge indices, and another map which translates the 15 unknowns into
edge indices. I call these maps the eqn map[] and unk map[].

These maps are specified by the user and they form the only input to r3+1 other
than the initial geometry. I am working on having the software determine these maps
on its own by scanning the lattice, but there are still details to be worked out. The
principle difficulty is deciding what to do when some points in the lattice have a different
number of edges emanating, as in the impurities in the S2 lattice described earlier. One
of my results, presented in the paper included in Chapter 7, shows that dynamical and
constraint equations can be swapped, which is the first step in solving this issue; the rest
are details.

Section 6.2 Numerical methods

The most common technique for solving coupled systems of algebraic equations is Newton’s
method (Press et al. 1988). If we have n algebraic equations E; with n unknowns u;,
Newton’s method arrives at a solution by finding tangent hyperplanes to the surfaces
defined by the equations and following the slope of those surfaces until we reach the
solution; it is quite analogous to Newton’s method in one dimension.

In one dimension, if we have a function E(u) and we want to find a root for F, the
algorithm is:

(1) choose an initial guess to the root, call it u(®);
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(2) compute the next approximation to the root

ol —1
u® =4 — (%ﬁi())) E(u(®);

(3) continue iterating until E(u(®) is close enough to zero.

In n dimensions we replace the derivative dE/du with the Jacobian matrix of the
Regge equations:
oF;

(6.1)

We then start with an initial guess for the values of the unknowns ugo) , and find the next

approximation u§1) by solving the system of equations
Z Jij (’Jo)d.’L‘J = —Ei (ﬁo) (62)
J

and computing " o
u; =wu; + dz;. (6.3)

This very effective method requires the solution of a system of linear equations (equa-
tion 6.2), and the calculation of the derivatives of the equtions to be solved (equation 6.1).

The Regge equations E; are to be accompanied by some extra equations which deter-
mine the lapse and shift at each point. The equations that determine lapse and shift are
derived and implemented in the paper which is included in Chapter 7 (Galassi, 1992a);
these equations can be added to the usual Regge equations to carry out time evolution.
The derivatives of these equations with respect to the unknown edge lengths must then be
added to the Jacobian.

Section 6.3 Calculating the Jacobian for the Regge equations

The calculation is quite messy, but it has to be done:

OF;
Jij =5 (6.4)
“ 8Uj
_ 0 Ztu €t cot Oy ; 65)
8Uj ) .
This can be broken into:
12412 —a® _ B oA,
dcot by _ R _ 2(1101,u; + 12010, — adau, ) As + (1 + 13 — a®) 5ot 66)

an 8Uj 4.,4%

The derivative of the area is a primitive function in r3+1 and is easily implemented. The
part which is difficult to program is the Kronecker ¢ which determines if the edge u; is a
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part of the triangle ¢. This is another area in which r3+1 uses its lattice information to
figure out which of these terms is nonzero.
The other term, with the derivative of the deficit angle, is the messy one:

de,  9(2m—32,, Do) __y Ocos™ (ﬁ)

an 8uj 8’U,j

0|t

where M is the determinant of the 3 x 3 matrix in equation (5.10) and V; and Vs are
the volumes of the tetrahedra which determine the hyperdihedral angle. Now we need to
calculate the derivative of the hyperdihedral angles A, ;:

dcos Ay g . 0Aq ¢
——— = —sinlA,; .
8Uj 8’(1,]'
but, at the same time
o) PIAAZ
dcos Doy Ozsthyy VivaG; —M (3%' : (6.7)
6uj o 6uj N 36V12‘/22 '
Putting it all together we have:
0Ast —1 oM B %aVl B M@Vg (6.8)
8Uj - 48AtV(4) (O’) 8Uj V1 8Uj VQ 8Uj ’ )

Notice that the terms 0V/0u;, and dM/0u; will also contain Kronecker ds once they are
expressed in terms of the edge lengths.

Section 6.4 Implementation of the Jacobian

With equations (6.6) and (6.8), and the formula developed in Chapter 5, we can calculate
the Jacobian. The way I do this in r3+1 is indirect. It is inefficient to choose an individual
component J;; and calculate it alone, so my procedure operates on an entire row at once,
filling in entries along that row in a sparse order. Here is the algorithm, which is used
unmodified for every type of situation my program handles, be it the straightforward
lattice, the teepee lattice, the initial value problem, or time evolution:

(1) initialize the Jacobian J;; = 0 for all i, j;

(2) loop through all equations, call the index eq_i and figure out which triangles hinge
on the edge corresponding to eq_i, call that list t_entour[];

(3) cycle through the triangles t_entour[k], get the three edge lengths in t_entour [k];
they are eq_i (the same as the equation edge), e_1 and e_2;

(4) the components of J which will get contributions are Jeg,eq;, Jegie; and Jie,, add to
them the appropriate quantity from the derivative of the cotangent term in equa-
tion (6.6).
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Now the inner loop in which we go through the simplices in the entourage of the triangles
t_entour [k]:

(5) loop through all simplices simp tour[m] surrounding triangle
t_entour[k], and obtain all the edges involved in that simplex, together with
its volume V(*) and the volumes of the two tetrahedra that determine the dihe-
dral angle: V; and V5.

(6) the elements Jeq,,, Wwill get contributions from all edges u; which are in the
simplex simp_tour[m], and the contributions are calculated from equation (6.8);

(7) the last step is to fill in the Jacobian matrix with the derivatives of the lapse and
shift conditions; this is straightforward because the lapse and shift conditions are
hardcoded, so I just type in the appropriate formula.

The calculation of the Jacobian matrix performed by r3-+1 is the first ever, not sur-
prisingly now that we see what is involved in calculating and implementing .J;;.
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Chapter 7: Bianchi Identities, Constraints,
Lapse and Shift ...

In continuum general relativity there are ten Einstein equations
Guw =0

with which we solve for the ten independent components of the metric tensor g,,. This
looks quite straightforward at first: ten equations for ten unknowns. But closer examina-
tion of the structure of the Einstein equations shows that the ten G, components are not
all independent. We have contracted Bianchi identities

D,G* =0 (7.1)

which give four differential relationships between the equations, thus reducing the number
of independent Einstein equations to six. How do we determine all ten components of the
metric with only six equations? As it turns out there are only six unknown components of
the metric because when we choose a coordinate system we are imposing four conditions on
the metric. So a more accurate summary is that we have six equations plus four coordinate
conditions with which to determine the ten metric components. The six equations usually
used to solve for the metric are the G';; components which are second order in time. These
are called the dynamical equations. The other four components G, are spectators; these
are called the constraints.

Section 7.1 The skeletal Bianchi identities

In Regge Calculus the nature of the Bianchi identities is not as clear. The ordinary Bianchi
identities

or, more compactly:
Ruvlpo;n) =0

were first discussed in skeleton form by Regge himself (1961), and he showed that they have
a topological interpretation and are exactly satisfied on a Regge lattice (see also Rocek
and Williams 1981).

But the skeletal contracted Bianchi identities do not follow from the skeletal ordinary
Bianchi identities. The contracted identities were first formulated by Miller (1986a) who
studied the Regge lattice from the point of view of Cartan’s “boundary of a boundary”
principle. In the continuum this principle allows a more deeply geometrical derivation of
both ordinary and contracted Bianchi identities (see Misner, Thorne and Wheeler, 1974,
Chapter 15). Miller applied the boundary of a boundary principle to a Regge lattice and
found that, because finite rotations do not commute, we should expect the contracted
Bianchi identities to be approximately but not exactly satisfied. This would imply that we
have diffeomorphism freedom in Regge Calculus, and we can choose four lapse and shift
conditions for time evolution, but we should only expect the evolution to be approximate:
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the constraints would be “displeased” spectators and not satisfied exactly. I have shown
(see the Lapse and Shift paper below) that the constraints are more closely satisfied as the
lattice is refined; more precisely, the constraints are proportional to the third power of the
lattice spacing.

For numerical relativity the question of diffeomorphism freedom is particularly impor-
tant, in part because it is not an exact symmetry any more (!), but most of all because
we want our coordinate grid (or, in Regge Calculus, our simplicial decomposition) to be
adaptive, in other words we want to focus more coordinate points (or simplices) around
the interesting parts of spacetime (for example, the location of the black hole collision).
This is achieved by choosing lapse and shift adaptively so that they focus the coordinates
toward the region of interest, as shown in Fig. 7.1. But of course, lapse and shift can only
be chosen freely if we have diffeomorphism freedom.

Region of interest

Fig. 7.1: lapse and shift focusing on the interesting region of spacetime.

I set out to study the nature of diffeomorphism freedom in Regge Calculus using
the r3+1 software, and found some very interesting results which are presented in my
paper Lapse and Shift in Regge Calculus (Galassi, 1992a). Since this paper validates my
methods and software, and provides the first application of r3+1 which has been studied
exhaustively, I include it verbatim in this dissertation to conclude this chapter.

In this paper I give a definition of lapse and shift in Regge Calculus, I implement that
definition, I examine the behaviour of convergence on choice of lapse and shift, I verify
that the choice of constraints is arbitrary, I examine the behaviour of the constraints for
flat and curved spacetimes, and I quantify the dependence of constraints on the lattice
spacing. But enough said here: the paper is quite complete.
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ABSTRACT

I use my 341 dimensional Regge Calculus code to give the first explicit ver-
ification that there is an approximate diffeomorphism invariance in Regge
Calculus. In particular I evolve a neighbourhood in a spacelike hypersurface
numerically, and show that one may choose lapse and shift freely. I use my
numerical approach to analyze the structure of this discrete diffeomorphism
group. I also study the constraints in Regge Calculus, and find that they are
proportional to the third power of the lattice spacing.
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1. Regge Calculus and Numerical Relativity

Recently there has been a great amount of effort aimed at solving Einstein’s equations
numerically in support of the proposed Laser Interferometric Gravity Wave Observatory
(LIGO) [1,2]. Several groups are working on the three—dimensional black hole collision
problem [3,4,5]. This problem is especially interesting for the following reasons.
e One avoids the complication of introducing source terms (matter) into the equations.
e It has a relatively small parameter space: a black hole is completely described by its
mass, charge, spin, position and momentum.
o It will provide experimental evidence for the existence of black holes, if such a gravity
wave signal is detected by LIGO.

The method used prevalently in solving Einstein’s equations numerically is finite dif-
ferencing [6,7,8]. Another method which discretizes Einstein’s equations is Regge Calculus,
in which a simplicial lattice is used to approximate a spacetime solution of General Rel-
ativity. Here the Regge equations — a simplicial analogue of the Einstein equations —
are used to solve for the length of the edges in the lattice, and thus determine the lattice
spacetime geometry. (See Regge’s original paper [9]; reviews can be found in [10,11,12].)

T email: rosalia@max.physics.sunysb.edu
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Miller [13] has shown that Regge Calculus meets the few broad criteria used to define the
finite element method [14].

In the past year I have developed formalisms and software to solve the Regge equations
without imposing symmetry, both to obtain initial value data [15] and to carry out time
evolution [16]. Regge Calculus has still to be proven viable in tackling realistic 341 dimen-
sional problems. Toward this goal, I study in this paper the diffeomorphism structure of
Regge Calculus — an essential analysis if we are to understand the stability and accuracy
(e.g. the conservation of energy—momentum) of this approach.

In this paper I use my software to examine the structure of the Regge equations with-
out imposing special conditions: I solve the full set of equations without any simplification.
In Sec. 2 I describe the type of lattice I use to do time evolution. In Sec. 3 I give my def-
inition of lapse and shift in Regge Calculus. Sec. 4 briefly describes the time evolution
equations (a scheme to be described more fully in [17]). In Sec. 5 I discuss Bianchi identi-
ties and constraints in Regge Calculus. Sec. 6 gives the essential elements of the numerical
formalism used, and in Secs. 7, 8, 9 and 10 I describe my numerical runs and present data
which supports my main conclusions:

e Four of the equations at each vertex can be treated as constraints.

e Four conditions per vertex are freely specifiable, corresponding to a free choice of lapse
and shift. There are some limitations on the choice of lapse and shift due to Courant
instabilities, physical timescales and numerical considerations. I discuss them briefly.

e When lapse and shift values are specified, the gauge is uniquely fixed.

e Once the dynamical equations are solved, the constraint equations are also satisfied
up to third order in the lattice spacing.

2. Lapse and Shift: My Lattice Geometry

In this section I will describe the lattice geometry used in my simulation. I assume here
that I have already evolved N time steps to the N*® spacelike hypersurface, and I wish
now to evolve a neighborhood of a point on this surface. However, before examining the
evolution procedure, it will be useful to describe the lattice geometry of the spacelike
hypersurfaces.

In Regge Calculus each three dimensional spacelike hypersurface is composed of tetra-
hedra. The interior of each tetrahedron is a section of flat Euclidean space. The geometry
of each tetrahedron is uniquely fixed by the values of its six edgelengths. Consequently
the three—geometry of a spacelike hypersurface is determined by the collection of all the
edgelengths of its tetrahedral tiles. It is possible, and convenient numerically, to tile a
three geometry uniformly with tetrahedra. In other words, I choose a tetrahedral lattice
such that each vertex has the same number of edges emanating from it. This is commonly

referred to as a “regular lattice” in finite element languageT.

T While it is possible to form a regular lattice with R or T topology, it is not possible
to tile a three-sphere regularly with an arbitrarily large number of tetrahedra. I have
methods for handling other topologies (where one must deal with impurities), but in this
paper I will consider only R3 and T3 topologies.
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To generate such a regular tetrahedral lattice with an arbitrary number of cells, I
start with a cubic lattice and insert diagonal braces within each cube (3 face diagonals
and 1 body diagonal), as shown in Fig. 1la. I now have a collection of tetrahedra which
fit together to form a flat 3-torus. I can obtain curved spacelike surfaces by varying the
edgelengths away from their flat space values. The advantage of this three dimensional
lattice is that I can generate arbitrarily high resolution simplicial lattices: I start from a
high resolution cubic lattice, and add diagonals according to my prescription. This lattice
is called the Quantity Production Lattice (QPL).

Fig. 1a: The Quantity Production Lattice: a single
cube broken out into the tetrahedra that form it.

I then assign lengths to the edges in this lattice. Rather than “inheriting” the lengths
from the cube in Fig. 1a, which would result in a complex of rectangular tetrahedra, I
use a scheme which yields isosceles tetrahedra. Assign length Al to all the cube face
diagonals (AD, AF, AG, etc...), and assign length Al\/3/2 to the cube edge and body
diagonals (this is shown in Fig. 1b; see also [13] and [18]). The isosceles tetrahedra have a
non-degenerate reciprocal lattice, which presents some advantages numerically.

The spacetime geometry sandwiched between two successive spacelike hypersurfaces
is composed of simplices, each of which has a flat Minkowski interior. This simplicial
structure is formed using an algorithm developed recently by Barrett et. al [17]. This
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/A /A
Fig. 1b: The Quantity Production Lattice, with edge lengths set so as

to yield isosceles tetrahedra. One tetrahedron (ACGH ) is shown here.

decoupling algorithm is a generalization of a method proposed originally by Sorkin [19,20].
Here I outline the procedure.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Label the vertices of the QPL lattice of the N** spacelike hypersurface with the letters
A, B,C,D, E, F,G and H as shown in Figs. 1a and 1b. Here the (z,y, z) coordinates
of vertex A are all even, i.e. {A} = {(24,24,2k), fori,j,k € Z}. Let {B} =
{(2¢ + 1,24, 2k)}, where the 2z component of B is odd. Then {C} = {(2i,25 + 1, 2k)},
{D} = {(2i + 1,25 + 1,2k)}, {E} = {(24,25,2k + 1)}, {F} = {(2¢ + 1,2j5,2k + 1)},
{G} = {(2¢,25 + 1,2k + 1)}, and {H} = {(2¢ + 1,25 + 1,2k + 1)}. There are now
vertices of eight kinds.

Pick an A vertex, say A = (2i,27,2k). Erect a timelike edge from A into the future
to a point A’. This A’ will be the corresponding vertex on the (N + 1)*" spacelike
hypersurface.

There are fourteen spacelike edges emanating from the A-type vertex on the Nth
surface. Point A is connected to two B’s, two C’s, ..., and two H’s. Connect A’
to each of these fourteen vertices by diagonal braces. Here, I have connected A’ to
its respective B, C, D, E, F, G, and H vertices with diagonal braces. This forms a
teepee-like structure above each A vertex. I have generated one new 4-simplex for
each tetrahedron sharing a vertex A — twenty four in total (see Fig. 2).

Repeat Step 2, and 3 for each 4, j and k in the lattice. At the end of this pass I have
a collection of four—dimensional teepees centered at each A—type point.

Erect a timelike edge from B into the future to a point B’.

Connect B’ to its respective A’, C, D, E, F, G, and H vertices with fourteen braces.
Notice that brace A’B’ is a spacelike edge in the (N + 1)*" spacelike hypersurface.

I continue this process through the remaining six vertices. When I get to vertex

H' it will be connected solely by fourteen spacelike edges (of the (N + 1)t spacelike
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hypersurface) to its neighbouring A’, B, ..., and G’ vertices. I will have generated a new
spacelike hypersurface, and the geometry between the two spacelike hypersurfaces will be
composed of 4-simplices.

Fig. 2: An A—type vertex teepee in 141, 2+1 and 3+1 dimensions, respectively.
Some spacelike diagonals are omitted in the 3+1 figure.

This lattice construction (which I call the teepee lattice, or the decoupling lattice)
effectively decouples the Regge equations used for time evolution into an eight-stage evo-
lution procedure in which at each stage one solves many sets of 15 equations for 15 un-
knowns'. Tn particular, I first solve all the A-type vertices, then all the B-type, ..., and
finally all the H-type vertices. The A-type vertices can be evolved using only information
contained between the N** and (IV — 1)** spacelike hypersurfaces. The B-type vertices
use in addition the information from A-type teepees. The C—type uses A and B teepee
information and so forth. ..

3. Lapse and Shift: Their Definition

For the purpose of this paper it will suffice to examine the evolution of a single A-type
vertex with coordinates {1, j,k}. In this section I will define the lapse and shift vector
for the teepee-like structure above vertex A. The definition of lapse and shift is more
transparent in 1+1 dimensions, and is generalizable to 3+1 dimensions. Therefore, I refer
the reader to Fig. 3 and define the lapse and shift vectors. The vector H connecting
vertex A to teepee summit A’ can be decomposed into a component orthogonal to vector
AB, and a component along AB:

AA" = OA' + A0 (1)
~ =~
Lapse  Shift

t Before implementing this decoupling scheme I used to do time evolution by solving
~ (11N x 11N) matrix systems, where N is the number of vertices on a spacelike surface.
Using this method I solve N separate 11 x 11 systems (actually 15 x 15 when I include the
lapse and shift conditions).
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These two components define the lapse and shift, respectively.

2 /
(Lapse from) oy Aasa By (2)

A to AI E+

and

(3)

Shift from\ _ s A0 AB, _ AA" +AB, - AB,
= = = 2 A +’
A to Af ABy 2 AB,

where A4 4:p, is the area of triangle (AA’B,). This definition corresponds precisely to
the continuum definition.

A!

A O B+
Fig. 3: An A-type vertex (in 1+1 dimensions) with lapse and shift marked.

The equations for lapse and shift given above depend only on the edgelengths of the
right-most triangle (AA'B. ), and do not depend on AB_ or B_A’. I could have derived
the lapse and shift using a tangent plane generated at A defined as a weighted average of
B_A and AB.; however, this refined definition will introduce corrections to Eqns. (2-3)
only of higher order in the continuum limit (see the Appendix). Therefore, I avoid the
added complexity in favor of the more simplistic definition given above, unless a higher—
order definition is needed. In a real sense, it is equivalent to the difference in Newton’s
(rectangle) approximation to an integral versus the trapezoidal approximation.

This definition of lapse and shift requires a well defined normal at each vertex in the
3-geometry. In Regge Calculus each spacelike hypersurface is made of tetrahedra, and
a tetrahedron in such a hypersurface defines a normal direction, since it is a section of
tangent space (the interior of the tetrahedron is flat by construction).

To define the lapse and shift vector in 3+1 dimensions I first pick an A—type vertex
in the N*® spacelike hypersurface. Then by construction (the QPL lattice described in
Sec. 2) there will be twenty four tetrahedra sharing vertex A — twenty four normals upon
which I may define the lapse and shift. Following the argument forwarded in the Appendix
I choose, without loss of generality, one of these tetrahedra to define the normal to the
spacelike hypersurface at A. I choose tetrahedron (AC; D, H) as representing the tangent
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space at A (this is the 3+1 analogue of choosing edge (AB.) as the tangent space of A in
the 1+1 dimensional example illustrated above).

The ten edgelengths of simplex (A’ACL D, H.) uniquely define the lapse and shlft
at vertex A. In particular, and following the 141 dimensional example, the vector AA'
connecting vertex A to the teepee summit A’ can be decomposed as follows:

iAo a2, apoap AP
—’ S——— AD
Shift Along @ Shift Along ﬁ
Py
+ AA.AH ‘WQ +ax.oa 94 (4)
Shift Along ﬁ apse

The point O is the image of vertex A’ when projected onto the the tangent plane
defined by tetrahedron (AC, D, H,) along the normal vector. The coeficient « is the
lapse from A to A’, and the three coeficients B¢, Bp, By are the components of the shift
vector in the triad base defined by the same tetrahedron.

— —
(Lapse from) e ( Altitude of ) AAT- 04" 4V acpH

A to A’ Simplex (A’ACDH) 0A OVuepw (5)

(6)

(Shlft Component) BoAC  — YTe ac AA’2 +AC? - AT Te
along AC AC E2 2 AC"

(Shlft Component) _ BpAD — AB AD AA’ +AD’ - AD .

= 7
along E AD E2 9 E2 ( )

Shift Component _ ﬁHﬁ T T AH2 A4 +AH _AH - )
along AH

AH AH 2 AH"
where I have dropped the + subscripts to avoid clutter.
This definition extends to the other types of vertices with minor adjustments: for F,
F, G and H-type vertices I choose a tetrahedron on the (N + 1)t surface (instead of the
N") as a basis for defining lapse and shift.

4. Evolving an A-type Vertex

To evolve the 3-geometry from the NP spacelike hypersurface to the (N + 1) spacelike
hypersurface, I must first evolve forward the A-type vertices, then the B-type vertices, ...,
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and finally the H-type vertices. However, for my purposes, to demonstrate the lapse and
shift freedom in Regge calculus, I will evolve here a single A-type vertex, say A(2i, 27, 2k).

Vertex A(2i,24,2k) in the N*" spacelike hypersurface is the meeting point of twenty
four spacelike tetrahedra. I evolve each of these off the spacelike hypersurface. This forms
a teepee-like structure above vertex A(2i,2j,2k) as mentioned in Sec. 2. This teepee
consists of twenty four timelike 4—simplices. The base of each of these simplices is one of
the twenty four spacelike tetrahedra sharing A(2i, 27, 2k). These twenty four simplices all
share the timelike “vertical” edge AA’ (the edge connecting vertex A(2i, 24, 2k) on the N*&
spacelike hypersurface to vertex A’(2i,24,2k) on the (N + 1)*® spacelike hypersurface).
In addition, there are fourteen diagonal edges reaching from A’(2i,2j,2k) to the N*B
spacelike hypersurface: A'/B,, A’/B_, A/Cy, A/C_, ..., A’/H,, and A’H_; where B, =
B(2i,25 +1,2k), B_ = B(2i,2j,2k — 1), Cy = C(24,25 + 1,2k), C_ = C(24,25 — 1,2k),
oo Hy =H(2i4+1,2j+1,2k+1)and H_ = H(2i — 1,25 — 1,2k — 1).

I assume I know all edgelengths up to and including the N* spacelike hypersurface.
There are then 15 unknowns. One unknown is the “vertical” edge, and the other fourteen
are the “diagonal” edges. I solve for these edgelengths using the Regge equations, which
are the skeleton version of the Einstein field equations. There is one Regge equation for
each internal edge in the lattice. Each equation is obtained by varying the simplicial
analogue of the Hilbert action (the Regge action) with respect to infinitesimal variations
in the length of the associated edge: L — L + §L.

(5([) =0 (Z Aheh) =0 — Z cot (eh,L)Eh = 0. (9)

hiL hiL

Here, the sum is over all triangle hinges h sharing edge L, Ay is the area of triangle
hinge h, 0, 1 is the internal angle of triangle h opposite edge L, and ¢y, is the deficit angle
associated to hinge h (it is equal to the curvature concentrated at triangle h times the area
dual to hinge h, or equivalently it is the change in angle a vector would undergo when
parallel transported around triangle h). I refer to (Eq. 9) as the Regge equation associated
to edge L. There are then fifteen Regge equations that depend on my fifteen unknowns.
These equations are associated to the following egdes: AB,, AB_, AC,, AC_, ..., AH_,
AH_, and AA'.

There are fifteen equations for fifteen unknowns. This is the skeleton analogue of
the continuum where we have ten equations for ten unknowns. Not all of the equations
are independent. Four of the ten equations in the continuum are constraint equations
— there are four contracted Bianchi identities per point in the continuum. Similarily,
Miller has shown that there are four simplicial contracted Bianchi identities per vertex
in Regge calculus ([21], see Sec. 5 also). Therefore, there are effectively only (15-4=11)
eleven evolution equations at vertex A. Just as in the continuum one is free to fix four
of the ten metric components by imposing one lapse and three shift conditions, so too
in Regge Calculus one is free to impose four lapse and shift conditions on the fifteen
unknowns; effectively reducing the unknowns to eleven. This is fortunate: I now have
eleven Regge equations, and four lapse and shift conditions at vertex A to solve for the
fifteen unknowns. The other four Regge equations are expected to be automaticly satisfied
up to the resolution of the lattice (this is demonstrated explicitly in Sec. 9).
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Which of the 15 equations associated to vertex A are the constraint equations? Can
I pick freely any 11 of the 15 equations to evolve A7 What freedom do I have in fixing the
lapse and shift? May I choose any four conditions to impose on the 15 unknown edges?
Is there an optimal choice of equations and lapse and shift conditions? These are the
questions I address in the remainder of this section and in the next sections.

We know that in the continuum there are 6 components of the Einstein tensor which
are second order in time (G;;). The other four (Gy,) are usually treated as constraints,
but one can use some or all of the Gy, in the place of some G;; to evolve the metric, thus
obtaining constrained or partially constrained evolution.

There is no analogous “natural” splitting of the Regge equations into dynamical and
constraint equations. In Sec. 8 I make several choices of constraints and of lapse and shift
conditions, I analyze the convergence rates for these choices, and the degree to which the
other four “constraint” equations are satisfied. I evolve an A—type vertex for various values
of lapse and shift, in flat spacetime and in the Kasner universe.

5. Bianchi Identities and Constraint Equations
In continuum General Relativity the contracted Bianchi identities

V-G=0

tell us that there are four relations between the ten components of the Einstein tensor.
This allows us to treat four of the Einstein equations (typically Go,) as constraints. Regge
showed that there is a skeleton analogue of the ordinary Bianchi identity [9,23] which is of
topological origin, but stated no corresponding contracted Bianchi identity.

Miller [21] developed the theoretical structure of the Regge equations using the Elie

Cartan moment—of-rotation construction!. He showed that the § o 8 = 0 principle, when
applied in its (2-3-4)—dimensional form to the simplicial lattice, gives rise to a contracted
Bianchi identity at each vertex. Therefore not all the Regge equations are independent.
He concluded that four of the Regge equations per vertex are constraint equations.

Because finite rotations do not commute, he predicted that the contracted Bianchi
identities in Regge Calculus should only be approximate, and gave an estimate that the
approximation should be (using the dimensionless form of the Regge Equations (Eqn. 9))
third order in the lattice spacing. This is verified in Sec. 9.

Kheyfets, Miller and Wheeler [26] then tested this hypothesis in a Null-Strut Calculus
model of the Kasner cosmology. This model had four equations for three unknowns, and
they found that if three of the equations were solved, the fourth (constraint) equation
was automatically solved. Here I use my new software to verify the degree to which the
constraints are satisfied, and I do so with arbitrary choice of lapse and shift, and with
several different lattice spacings.

T Similar work was done independently by Barrett [22]; some aspects of diffeomorphism
freedom in Regge Calculus were also studied by Rocek and Williams [23], Hartle [24], and
Piran and Strominger [25].



Lapse and Shift in Regge Calculus 45

The relationship between the ordinary and contracted Bianchi identities and the con-
straint equations in Regge Calculus has not yet been exhaustively studied, and could do
with further investigation.

6. Numerical Formalism: A Glimpse

Over the last year I have developed a rather general formalism and software package
to formulate and solve the Regge equations in 3+1 dimensions. One important design
specification was that the software should set the equations up on its own once the lattice
and lapse and shift are specified. (This has not been done before: all numerical solutions
in Regge Calculus so far have been specific, have made several assumptions, and most of

all have not solved for all edgelengths in the lattice.i) This has allowed me to quickly
experiment with various ideas I have had for different lattices, different gauge choices, and
different initial values for edgelengths. My software also prepares the Regge equations
for different topologies, such as S% x R, although I still have to handle the impurities
introduced in the S3 topology. To formulate the equations on its own, my software takes a
list of simplices as a primitive description of the lattice. The simplist is analyzed and from
it I form tables containing information on point-to-point connectivity, which simplices
hinge about given triangles, and other information about the lattice structure.

In Regge Calculus each edge can yield an algebraic equation (Eq. 9), but some edges
don’t have proper entourages, and others are treated as constraint equations. So one other
input my software uses is a mapping of edge indices into dynamical equations. Similarly
not all edges are unknowns: I specify four edges per point as lapse and shift, and other
edges are determined in the previous thin sandwich. So the last input I give is a mapping
of edge indices to unknowns. Once the three inputs are given, the user can start the initial
value problem and the time evolution. For the purposes of this paper I will describe what
happens in a time evolution step, and in particular in the time evolution of the A—type
vertices.

As mentioned in Sec. 4, I have 15 equations from which I choose 4 constraints. Several
choices are possible, and turn out to be roughly equivalent (see Sec. 8). I are left with 11
dynamical equations, and I add to these four equations that specify lapse and shift (equa-
tions 5-8). Given these fifteen algebraic equations, the software calculates the Jacobian
matrix of their partial derivatives:

0F;

Jij - 8Uj

where F; (¢ € [0,14]) are Regge equations and lapse/shift conditions, and u; (j € [0, 14])
are the unknown edges. Once the Jacobian is calculated, I can do an iteration of Newton’s
method by solving j Jijdu; = —E;, where du; are the corrections to u;. I iterate until
the 15 equations have converged satisfactorily. The convergence criterion is Y |FE;|/n < €
(n = 15); the graphs and tables in this paper are produced using ¢ = 10710,

1 In a recent visit to Los Alamos, Leo Brewin has shown me a numerical scheme he is
developing which is remarkably similar to mine, and does indeed solve for all the edges
without imposing symmetry.
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7. Numerical Runs: Organization

Here I present the results of my runs. I have made a lot of numerical experiments so the
presentation of results would be confusing without an organizing principle.
In presenting my results I want to show:
e that several different choice can be made of which four equations to discard (i.e. to
consider as constraints); and
e how convergence behaves depending on what choice is made

Once I have determined which four equations serve well as constraints, I want to show:

e that the four constraint equations are satisfied: i.e. that they converge together with
the dynamical equations, at least up to a certain point which depends on the curvature
and lattice spacing;

e that one can choose lapse and shift arbitrarily, and all the edges are then completely
determined by the dynamical equations; and

e how convergence behaves as a function of the choice of lapse and shift.

Following this guideline, I present my results. First I show that I can treat various
sets of four equations as constraints (Sec. 8), then that the constraint equations are satis-
fied once the dynamical equations have converged (Sec. 9), and finally that I can choose
arbitrary lapse and shift (Sec. 10).

8. Numerical Runs: Choosing Constraints

I have made three quite different choices of constraints (and hence of dynamical equations),
in my attempt to show that several choices of constraints are possible. Some choices might
seem “natural”’, in the sense that the constraints are chosen to come from edges with a
common characteristic. For example, in the second choice the constraints are chosen to be
the three straight spacelike edges in the isosceles QPL (AD, AF and AG) together with
the straight timelike edge AA’. The edge AA’ is treated as a constraint in both the first
and second choices, but in the third choice the (only) timelike edge in the A-type teepee
is treated as a dynamical equation, instead of a constraint. I find that it makes almost no
difference which edges are chosen as constraints: convergence is negligibly faster for the
“natural” choice, and the constraints converge only slightly more.

The runs presented here were made with approximately 10% random perturbations
of the fifteen edges from flat space and the Kasner model. The edges, varied initially,
converge back to the correct solution quickly. The fact that different random perturbations
converge to the same result confirms my thesis that the fixing of lapse and shift fixes the
gauge completely.

I conclude that I can “swap out” any four equations at will. In the remainder of this
paper I will use the somewhat “natural” choice of constraints: AD, AF, AG, AA’.

9. Numerical Runs: Convergence of Constraints

All runs in this Sec. were made with a constant lapse and zero shift. I set the lattice
spacing parameter Al = 0.1 and the lapse At = 0.01. 1 write the Regge equations and
constraints (equation 9) in a dimensionless form, so when I plot > EZ? and Y C?, these
are always pure numbers.
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Constraint choice Model # of iter. S E? S C?
AD,AF,AG,AA’ flat space 5 1.15 x 10724 1.77 x 10719
Kasner 6 1.43 x 10719 2.33x10°8
AB,AC,AE,AA’ flat space 4 1.15 x 10~24 4.09 x 1024
Kasner 7 1.33 x 10719 8.07 x 107
AB,AC,AE,AH flat space 4 1.19 x 10~2° 1.39 x 10=%4
Kasner 7 1.62 x 10~21 8.07 x 10~ 7

Table 1: Convergence of dynamical equations and constraints for various choices
of constraints. One sees that the choice of constraints is arbitrary, since one
obtains good convergence rates and accuracy of constraints for all three choices.

e Flat space
This numerical run re-establishes the correctness of my solution of the Regge equations
for this decoupling lattice, and shows that fixing lapse and shift uniquely determines a
solution with no other freely specifiable edges.

In this first run I set constant lapse and zero shift for a single A-type vertex, then I
randomly perturb the fifteen edges by about 10% from the flat-space values. The result is
a rapid convergence of the fifteen unknowns back to flat space values in just four iterations
of Newton’s method (see Fig. 4). The constraints also converge to zero, showing that
in Regge Calculus the constraints are solved exactly in flat space once the dynamical
equations converge.

e Kasner universe
In the second run I model an axisymmetric Kasner universe. I make an analytic fit to the
Kasner metric
ds® = —dt® + t*P=da® + t*Pvdy” + t*P=dz2?

with p, = 2/3, py, = —1/3 and p, = 2/3. Then I randomly perturb the fifteen unknown
edges by about 10%, and evolve the A—type teepee for a time step. The result is a
rapid convergence of the dynamical equations. The constraint equations converge only up
to a certain point, showing that constraints are satisfied only approximately for curved
spacetimes.
e Refining the lattice spacing
In this run (a series of runs, actually) I examine how the accuracy in the constraints
improves when the lattice is refined. I carried out analogous simulations to the previous
run (Kasner model) for various lattice spacings. The results are presented in Table 2 and
Fig. 5, which show that refinement of the time interval does not improve convergence of
the constraints in the Kasner model, whereas refinement of the spacelike lattice parameter
Al improves it dramatically.
The data in Fig. 5 is closely fit by a function

Vo cxan = /302 (Al =0.1) x (%)3
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Fig. 4: A plot of the sum of the Regge equations ) E?/11? and the constraints
3" C?/4? versus iteration number in Newton’s method. The constraints converge
up to machine accuracy in flat space, but only approximately for the Kasner model.

(Al, At) > C? V> C?ratio
(0.1, 0.07) 3.30 x 10710 1.04
(0.1, 0.05) 3.40 x 10710 1.03
(0.1, 0.04) 3.45 x 10710 1.02
(0.1, 0.03) 3.49 x 10710 1.01
(0.1, 0.02) 3.54 x 10710 1.01
(0.1, 0.01) 3.59 x 10710 1.00
(0.1, 0.005) 3.61 x 10710 1.00
(0.3, 0.01) 2.57 x 10~7 26.7
(0.2, 0.01) 2.28 x 1078 7.97
(0.1, 0.01) 3.59 x 10710 1.00
(0.08, 0.01) 9.48 x 107! 1/1.95
(0.05, 0.01) 5.62 x 10~12 1/7.99
(0.02, 0.01) 2.30 x 10~ 14 1/125

Table 2: Constraint dependence on lattice spacing for Kasner model. The accuracy
of the constraints depends on the space parameter, but not on the time step.

which is also plotted in the figure. Wc conclude that the constraints are satisfied up to
third order in the lattice spacing.
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Fig. 5: Deviation in the constraints as a function of lattice
spacing. Notice how the slope of the log plot is -3, confirming that
the constraints are satisfied to third order in the lattice spacing.

10. Numerical Runs: Choosing Lapse and Shift

One of the principal results presented in this paper is that there is a diffeomorphism
freedom in Regge Calculus; hence one can choose lapse and shift freely, and the solution
to the Regge equations will be unique for that choice. However, in a numerical scheme the
“freedom” to specify lapse and shift is limited by the Courant condition, by the physical
timescales of the problem, and by the nature of the numerical methods used.

In an explicit time evolution scheme, the fields at a point p on the (N +1)*® spacelike
surface Y41 are calculated from the values in a region R (the differencing domain) of
the previous surface ¥ (and possibly previous surfaces as well). If the past light cone of
point p intersects a region of ¥ contained in R, then we have a Courant stable scheme.
Otherwise we have a Courant unstable scheme, and the computed solution can diverge
exponentially from the correct solution. See Ref. [27] and the references therein for a
discussion of the Courant instability.

The Courant condition limits my possible choices of lapse and shift: if the lapse is too
large, the past light cone of a point p on ¥ x 41 will be too large; and if the shift is too great
then the past light cone of p will be shifted over and might go outside of the region R.
Nevertheless, the application of the Courant condition to Regge Calculus, and to my lattice
in particular, is not as clear as it is in finite differencing. First of all, the information in
Regge Calculus does not consist of fields defined on the vertices of the lattice; rather it
resides in the edgelengths, some of which are on ¥, some on X471, and some in between.
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Then Regge Calculus is an implicit scheme, but my decoupling lattice has a small domain
of dependency because of the partial decoupling of the Regge equations. I will carry out
a more complete analysis of Courant instabilities for this type of lattice in another paper,
but it is important to note that lapse and shift are limited in principle.

0.002 4.5x10-10

0.0015 - 4x10-t0— =

N B N |
> o

o8 7 o8 = B

N L J N | |
17} - w0

2 0.001 8 g gr0m- \ |

g [ ] 3 L i
£ £
e B 5

n n |- -
=] - =]

o ) L i
3} L i o

0.0005 - [ i

L il 3x10710— —

0 — S i

PR I T T SIS AN S AT N N R -10 I I I | I I I | | | | | |
0.02 0.04 0.06 0.08 0.1 2.5x10 0 0.2 0.4 0.6
shift: 8,/Al lapse: At/Al

Fig. 6a and 6b: Behaviour of the solution for various shifts and lapses; Al is 0.1.
Increasing shift causes a drifting of the constraints, which happens to different degrees according
to the lapse (6a). The dependence on lapse is instead very slight when shift is zero (6b).

My choice of lapse is also limited by physical considerations: if a problem has a natural
time scale, then I want my lapse to be smaller than that scale or I will miss some of the
action in the time evolution.

My numerical scheme introduces another limitation. I solve the Regge equations using
Newton’s method in fifteen dimensions. This method converges quite rapidly, but depends
on an initial “guess”. These numerical problems, unlike the Courant condition, can be
solved when they arise in individual applications.

Here I test my software for various values of lapse and shift, to show that for each
choice I get unique solutions to the Regge equations.

e Changing the shift
Here is a set of runs to show that a range of shifts can be chosen for a given choice of
lapse. These runs are all based upon a flat spacetime lattice with a lattice size parameter
Al = 0.1 and lapses of 0.01, 0.02 and 0.05.

With each of these lapses, I vary the shift in the ‘1’ direction S;, and see how the
constraints behave. The results are shown in Fig. 6a, and show that convergence of the
constraint equations gets worse as the shift to lapse ratio S; /At is increased. This confirms
that I can choose the shift and the Regge equations will still converge, but it also shows that
the computed solution will drift farther from the analytic solution as the shift increases.
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e Changing the lapse
Here I run a Kasner simulation with zero shift and different values of lapse, to examine
how the choice of lapse influences convergence rates. Fig. 6b shows the behaviour of the
constraints with various settings for the lapse At: the lapse does not influence the degree
of convergence appreciably. The values of lapse in Fig. 6b go up to ~ 0.7 - Al, which
puts the teepee near the light cone, and hence near the limit of Courant instabilities. My
software does not currently allow one to pass the light cone.

11. Future Applications

The basic 3+1 dimensional software to solve the Regge equations on a T3 x R lattice
was completed in June 1992. I am now beginning to apply my tools to interesting and
observationally relevant astrophysical and cosmological phenomena. Two cases are most
interesting.
e Inhomogeneous cosmologies, where fully 341 dimensional codes are absolutely neces-
sary. The major issues to be addressed for inhomogeneous cosmologies are:

o Finding equation maps and unknown maps in the S2 x R lattice. I are working
on an intelligent algorithm to form the equation maps and unknown maps for
arbitrary lattices, with no assumptions of regularity. This is necessary because
some manifolds, when modeled with the QPL will have impurities: some vertices
with a different number of edges emanating from them. They have to be han-
dled separately when forming the equation map and unknown map. The result
(presented above) that one can choose any of the edges at a point as dynamical
equations is the first step on the way to solving this problem.

o Introducing matter into the Regge equations. This has been done in a specific
case [5], but I need to develop a formalism to incorporate the right hand side of
Einstein’s equations (7}, ) into the Regge equations.

o Developing a Tr(K) = constant slicing of the manifold.

o Developing fully four dimensional visualization of the results.

e Two black hole collisions, where, once again, fully general 341 dimensional codes are
required. The difficulties involved here are:

o Finding a good way of expressing the boundary conditions for two black hole
collisions (this alone is a very difficult problem which has made finite difference
approaches to this problem difficult).

o Developing a useful slicing of the manifold which makes the lattice finer near the
black holes and more coarse in the background.

I will first tackle the problem of inhomogeneous cosmologies: most of the difficulties
here are close to being solved (though not necessarily implemented).
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Appendix

Here I show that the definition of lapse and shift using a weighted average of normal
vectors at a vertex introduces a second order correction to the first order expressions (2-3)
derived in Sec. 3. I conclude that I may avoid the added complexity of the weighted—
average definition in favor of the single-tile definition of lapse and shift given in Sec. 2.
This result extend, without loss of generalization, to 3+1 dimensions.

Fig. A1: An A-type vertex in 141 dimensions; O- and Oy are
midpoints of AB_ and ABy respectively; T4 is parallel to O_Ox.

I define the tangent space (7T4) at vertex A (c.f. Fig. A1) as a weighted average of the
two tangent spaces defined by segments AB, and AB_. In particular, 74 is the line at A
defined as a difference vector.

00, = A0, - A0_ = %Eﬁ—%ﬂ?_. (A1)

Therefore, the two angles in Fig. A1 are determined by (A1l). In particular,

sinf_, (A2)
and
T=0L+0_+ ¢4 + . (A3)

The lapse and shift from A to A’ can now be defined using this weighted average
tangent space.

B <Lapse from

o A > = OA = AAsin(py +0,). (A4)
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Shift component _ _
b < from A to A’ ) 0 cos (¢4 +04) (A5)

I are now in the position to compare (A4-A5) to (2-3), respectively.
The extrinsic curvature at A is a function of, among other quantities, the angles 6
and 6_ [29,30]:

gy o Cdsullnogiog) | dsiuhy 40 a0
AB_+ AB, AB_ + AB,

__ Since the extrinsic curvature is bounded, and the edge lengths are small (AB_ and
AB, ~ O(Al) where Al is the characteristic lattice spacing), then the angles 6 and 6_

must be small: .

0y ~ §KAAI = O(Al). (A7)
These two conditions, and consequence, are necessary conditions for an accurate trian-
gulation. The requirement that the angles be small is directly related to the degree of
conservation of energy-momentum in Regge Calculus. Using this result, I may Taylor

expand (A4-Ab) in powers of 6. In particular,

a = AA’sing, +AA0, cosp, +O(AIP), (A8)
O(Xl) O(XP)
and L L
B = AAcosp, — AAG, sinp, +O(APP). (A8)
O(ZZ) O(Xﬂ)

To first order in Al, the definition of lapse and shift derived here agree with the defi-
nitions in Sec. 3. The corrections to (2 and 3) of Sec. 3 are of second order. Therefore, I
may use the simpler definition as long as the spacetime lattice geometry is sufficiently fine.
This result is more important in 341 dimensions as the expressions for the weighted aver-
age lapse and shift are substantially more involved than the single-tetrahedron definition
forwarded in Sec. 3.
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Final Reflections.

At the end of the Lapse and Shift paper I state my future plans for applying the r3-+1
software. I am optimistic regarding the prospects, since a lot of the work to be done is
detail work and there are no barriers that seem insurmountable. I feel that Regge Calculus
is now a flexible tool for solving Einstein’s theory on a computer.

The destiny of the Regge Calculus practioner according to Schulz.
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